e^πi+1=0 인 이유
저번에 누가 고딩과정에서 어떻게 증명하냐고 물어보길래 올림 ㅎ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
초등학교 때까지만 해도 내가 언젠가는 노력해서 원하는 걸 전부 다 이루고 세계에 큰...
-
ㅖ
-
오르비 유저들의 생각이 궁금합니다.
-
내꿈이 바뀌는 중 나 사실 패션쪽에 재능이 있을수도 있지 않을까?
-
시작한지 3달도 안 됐긴함 근데 트위터 한다고 해서 싹 다 병신은 아님...
-
허니 ㅇㅈ 4
반칙 아니냐..
-
ㅋㅋㅋㅋ 이거 제가 피해 안봤어도 신고할 수 있나요?
-
언매 90 91 2
표점 증발해서 합쳐질일은 없겠죠?
-
SRT탑승 완료 8
창가쪽인거너무좋다
-
서강대는 복전이 자유라서 경영이나 컴공은 수강신청 엄청 힘들거같은데 실제로는 어떤가요??
-
최상위권 애들은 의치한약수 서연고 서성한 중경외시 다음 모르더라
-
수능 성적표는 온라인으로만 봐야겠어요 이것저것 하기 귀찮다
-
되면 나도 따서 꺼드럭댈래
-
예비고3이고 내신은 3.1 2.7 2.5 나오다가 이번 중간을 너무 못봐서 5까지...
-
문제 풀이 시간은 (발상을 떠올리는 시간)+(계산하는 시간)이다. 기똥찬 발상도...
-
이참에 +n 박아서 서연고서성한뱃 올클을 노려보는 건...
-
여러분들이면 어디가시나요 ??
-
뿌링클이에요
-
조금이라도 있었다면 이 비참한 삶 미련없이 버려버릴텐데
-
수시로 지방대 의대 합격하면 일반적으로 과외비를 얼마나 바들까요? 수능은 평소보다...
-
국어는 작년 9평 수능 올해 6평까지 백분위 쭉 100 9평 수능 1개씩 틀렸고...
-
‘뜨거운 바다’ 부른 11월 눈폭탄…서울 역대 세번째 많은 눈 0
밤 사이 또 다시 눈 폭탄이 떨어지면서 서울 등 수도권에 최대 40㎝가 넘는 눈이...
-
6모9모 현장응시처럼 문자오고 모교 직접가서 받는건가 군인인데 엄마한테 등본같은거...
-
제목 그대로요 대충 33(4)235
-
담주 금욜… 시간 빠르다
-
저만해도 250612: 현장 당시에 딱히 성질 감은 확실히 안옴 -> 그냥 체육하자...
-
세종캠인척하기 5
군대에서 빡통대가리짓 할때마다 스킬
-
생명이 빅똥 싸버림..하.. 건대 가고 싶은데 힘들 것 같고 높공으로 하면...
-
변표..? 1
과탐선택자가 나중에 대학에서 변표를 발표했을 때 지금보다 손해..?를 보는 일이...
-
글루따띠온
-
마이너 TO숫자 가지고 의대서열질 훌리질 하던 시절이 행복했었지....
-
삼성전자를 비롯한 반도체회사들 ㅈ되기시작... 롯데 제2롯데타워 담보로 내놓음...
-
얼굴에 살없고 마른스타일 몸도 탄탄하면 좋지
-
ㅈㄱㄴ
-
1덕코가 들어왔는데 뭐지 이거
-
아 다리 아파 10
흰여울문화마을은 포기해야할듯 일단 서면으로 간다!
-
* 자세한 문의는 아래의 링크를 통해 연락 바랍니다....
-
고3이고 반수 또는 재수예정입니다 이건 전체적인 커리가 아니라 1-2월 계획입니다!...
-
안해 병신아
-
확통사탐이었는데 공대가고 싶어서 뭐 정리해놓은거 보니까 주요대학은 과탐 가산점 있던데… 잘 몰라요
-
사회학과의 실태 8
알고 싶습니다 무서운 친구들이 많다는 소문이 있어서...
-
계산 길어지는 풀이를 안 하려는 애들 이해 안 감 13
물론 계산 길어지는걸 비선호 할 수 있지. 근데 계산을 회피하면 계산력은 조상님이...
-
오르비를더많이하면되겠다! 여기사람들글도잘쓰잖아
-
무궁화호 타면서 느낀점 20
생각보다 역이 굉장히 많은 것 같음
-
진학사 피셜 연대식 709.13 고대식 673.91 정외가 뭔가 좀 불안한데 대신...
-
하나의 고려 7
안암 구로 안산 고영 정릉
-
안녕하세요! 겨울방학이 온 기념으로 해서 예비고2~고3 혹은 재수이상의 학생들이...
미방으로 증명하는거구나..
그러고보니 미방이라서 고딩과정이라고하긴 힘들려나;;
오 꿀잼
ㄷㄷ
와 오랜만이다 저 긴생머리
인테그랄이요?
네 ㅇㅅㅇ
비약이 너무 심하네요
복소수의 미분이랑 적분이 먼저 정의되야 하는데 그냥 저렇게 하면 답은 맞을지 몰라도 고딩 과정이나 엄밀함 중 하나는 희생되야겠죠
좀 엄밀함이 떨이지긴 한거 같네요 ㅠㅠ
이거 원래 sin이랑 cos이랑 e^x를 무슨 급수전개로 다항함수로 나타내서 증명하는 거 아닌가요
테일러급수요
증명방법은 되게 많더라고요
저거 테일러로 증명하는거 처음 접했을때 진짜 감탄했는데ㄷㄷ
헐 맨날 궁금했는데... 감사^^
히힛
허수에서도 성립하나? 실수배일때만 생각했는데
그부분에선 엄밀성이 떨어지는거 같네요 ㅠ
아름답다
복소수의 미분과 적분을 고등과정에서 안다루는데..
고딩과정이란말 취소합니다 ㅠ