lim a->0+일때 f(a)-f(0)/a와 lim a->0+일때 f'(a)의 차이
(다시 치기 힘들어서 전자 후자로 줄일게요) 전자는 우미분계수를 뜻하는 말인데 후자는 고교과정내에서 다른 명칭이 없나요?
전자의 좌극한값과 우극한값, 함숫값이 모두 같으면 이 함수는 a에서 미분가능하잖아요.
근데 후자는 우극한값 좌극한값 함숫값이 모두 달라도 이 함수는 f'(a), 즉 도함수의 a값이 존재하니까 원함수는 미분가능 하다. 맞는 말인가요?
예전에 인강 들으면서 유제에 도함수 그래프가 주어져있는데 도함수의 그래프가 x<=0일때 y=-x,x>0일때 y=-x-1 이런 꼴이였는데 인강 쌤은 이게 도함수의 함숫값이 존재하므로 원함수는 0에서 미분가능하다고 하셨습니다.. 전 이때까지 우미분계수를 도함수의 우극한으로 취급해왔거든요..근데 도함수은 불연속이라면.. 도대체 원함수 그래프가 어떻게 그려지는지 상상이 안되네요.
질문을 요약하자면 도함수가 불연속이라도 함숫값만 존재한다면 원함수는 미분가능한가, 가능하다면 이때 원함수의 그래프 개형은 어떻게 되는가.
꼭 답변해주세요..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
보닌 닮은꼴 0
슬램덩크 채치수?
-
닮은꼴? 6
있는것만 으로 ㄱㅁ이다
-
ㅇㅈ 1
겠냐
-
지금 사람들 주민번호 앞자리가 3,4니까 등차수열 어쩌구에 의하여 2200년생이 태어나야할듯...
-
인증10번이상 한 사람은 사랑니 ㅇㅈ 의무화하자
-
망했다 1
또 3차 갈야지 ㅋㅋ
-
남르비는 남자고 여르비는
-
드라마보러가기전질받 11
시즌2를거의다봤어요
-
AI가 생성하는 콘텐츠가 사회주의 핵심 가치관에 부합하는지 ㄷㄷㄷㄷㄷ
-
ㅋ
-
걍 다 기만임 12
너네가 163 75,평발,모솔,평균 5등급의인생을 살아본적 있냐
-
관심줘서감사합니다 아이 신나
-
의대를 상위권 중위권 하위권으로 나눈다면 상위권 의대의 기준이 어떻게 된다고...
-
뻥임
-
아직 81키로여서 하고싶어도 할 수가 없음ㅇㅇ
-
팔로우하고쪽지보내게 빨리
-
아직 20대라 앞자리 2임
-
나는 나의 내면세계로 간다
-
너무 배고픔 1
밥사주면 개가 되겟음
-
지금은 좀....
-
그러면 너무 허무하고 느리게지나면 힘듦 차라리 빠른게낫다
-
이게 인증의힘인가
-
로드호그 빅맘 곽튜브(얼굴이 닮음) 비기(래퍼) 유희관 보따 김원식
-
수능으로 약대 오는 게 전반적으로 쉬운 거죠?
-
인지도조사 3
과연
-
오랜만에 열중할게 생기니까 꽤 뿌듯함 내일도 이미지 받아서 그림 그려드림ㅇㅇ
-
ㅇㅈ 18
예상댓글: 넌 의대가라~
-
지구가 파산했다 법 없이 사는 놈들 다시보면 개연성 떨어지고 후반 급전개도 있지만...
-
다들 내려갓나 0
나 심심하다
-
중경건시동외홍 0
우웅 나 아기 동대생 며칠 뒤 건대생
-
고딩때 사진 10
강아지는 울집 강아지래요 코로나때 찍은거라 근데 하관 박살나서 마스크 낀게 나은듯
-
하하
-
ㅇㅇ.... 문제는 건대가 추합이 애매한상황이라는거임뇨,,
-
영어 현강 2
작수 영어 3인데 영어 혼자서 공부하기가 너무싫어서 그냥 시대라이브 하나 듣는거...
-
실검이 왜 빵? 5
?
-
ㅈㄱㄴ..
-
요 근래 겪은 원딜들이 아프리카 뱅 젠지 룰러 kt 에이밍 젠지 페이즈 이정도 라인업이라....
-
생화학 테러로 신고당하고 폐쇄될 수 있음
-
남자친구가 아버님 운전 도와드린다고 오늘 생일인데 생일 축하해란 말도 없이 그냥...
-
생명 쌤 ㅊㅊ 1
지금 윤도영썀 듣고잇는데 넘 쉬움 엔제사서 그냥 따라갈까 쌤바꿀가 김연호썀..? ㅇㅇ
-
얼굴 가리고 자요
-
술한잔햇어여 9
으으 취한다
-
전작인 데못죽에서도 느꼈는데 확실히 저점이 높은 작가같음 캐릭터 조형은 여전히...
-
닮은꼴 ㅇㅈ 4
ㅈㄱㄴ
-
ㅇㅇ
-
앞머리 ㅇㅈ 8
날아다니는 앞머리를 본 적이 있는가
-
짜고 맵고 단 자극적인 것들은 어릴 때 많이 먹어둬라.. 살고 싶으면 운동해라......
-
애니나 봐야지 3
길드의 접수원이지만 , 잔업이 싫어서 보스를 혼자 토벌하려고 합니다
님이예시로든걸 함수로그려보면 x=0일때 좌측쪽은 x=0에평행한꼴이고 우측쪽의기울기는 -1이죠..
선생님이 잘못말하신게아닐까요?
그니깐 y축을기준 왼쪽그래프의 x=0일때는 0 즉좌미분값0
오른쪽그래프는 x=0일때 y값이 -1 즉 우미분값은 -1
엄밀하게말하면 x=0일때 도함수값은없는게맞아요 다만 좌우로나눌땐 나뉠수있단거죠..
근데 도함수의 좌극한값이 원함수의 좌미분계수라는건 배우지 않았습니다..
혹시 수학과학생이라서 확실히 아시고 답해주시는거면 제가 잘못알고 있다는거구요..
기출에서도 풀었던거같은데 불연속이어도 원함수는 연속일수있습니다 다만미분불가능할뿐이에요
저런그래프는 충분히존재할수있습니다...
님말대로 좌식으로정리하면 결국 lxl도 구간으로나누면 +0쪽은 x이니 +1이나오고
우식으로접근하면 lxl를구간에따라나눠서 정리하면 x>0일땐 +1이잖아요
그 문제는 미분을 피상적으로 아시는 분이, 별 생각없이 만든 문제라고 생각이 됩니다.
도함수가 불연속이라도 함숫값만 존재한다면 원함수는 미분가능한가 --> 예. 반드시 미분가능합니다.
가능하다면 이때 원함수의 그래프 개형은 어떻게 되는가 -> 원함수는 연속일 뿐만 아니라, 각진 곳이 없어야 합니다.
원함수 f(x)가 구간 [a,b]에서 미분가능하다면, (보통 열린 구간으로 나타내는데 그냥 대충 이렇게 쓰겠습니다.) 우리가 친숙한 많은 경우에 그 도함수 f ' (x)가 연속이지만, 수학적으로 반드시 연속일 필요는 없습니다. 재미있는 성질이 하나 있는데, f ' 이 연속이 아닌 경우에조차도, f ' (a)와 f ' (b) 사이의 모든 값이 반드시 적절한 어떤 x (구간[a,b] 내의) 에 대해 f ' (x)의 형태로 표현이 되어야 합니다.
(따라서 작성자분 예처럼 도함수가 step 불연속인 예는 있을 수가 없겠지요.)
예를 하나 들어주시면 딱 catch 할 거 같은뎁 .. 말씀하신 형태의 함수로는 어떤 게 있나요??
그리규.. 제가 난독증이어서 그런가..ㅠㅠ
재미있는 성질이 있다며 말씀해주신 것과, 그 앞에 있는 문장이 제 눈에는 같은 의미로 보이는데 ... 무슨 차이가 있는 건가요???
원글이님의 질문을 읽어보시면
'도함수가 불연속이라도 함숫값만 있으면 원함수는 미분가능한가?' 라는 질문이
'도함수가 불연속이라도 도함수의 함숫값만 있으면, 원함수는 그 점에서 미분가능한가?' 라는 뜻의 질문일 것이라고 추측이 돼요~
도함수가 불연속이든 연속이든 그것과 무관하게, lim_{h->0} (f(x+h) - f(x)) / h 라는 극한만 존재하면 그 점에서 미분가능한 것이니까 미분가능하다 말씀드렸어요~ 즉, lim_{h->0} f ' (x+h) 가 존재하든 안 하든 상관없이 도함수의 값은 바로 앞 문장의 극한이 존재하기만 하면, 존재한다는 뜻이었어요.
그리고 예를 들어
y = x^2 sin (1/x) (x=0이 아닐때)
y = 0 (x=0일 때)
로 정의된 함수가 유명한 것으로 알고 있어요.
이 함수는 모든 실수x에서 연속이고, 미분가능해요. (원점 근처에서 마구 진동하기는 하지만, 진폭이 점점 줄어들어서 연속이고, 이 함수도 직관적으로 부드러운 함수이지요~ (부드럽다(smooth)고 하면 보통 무한 번 미분 가능하다는 뜻으로 쓰지만 여기서는 그냥 각진 곳이 없다는 뜻(한 번 미분가능하다는 뜻)으로 사용할게요)
그런데, 미분해보면 도함수는,
f ' = 2x sin (1/x) - cos (1/x) (x=0아닐때)
f ' = 0 (x=0)
이라서, x=0에서 도함수가 연속이지는 않지요.
이것이 도함수의 존재성과, 도함수의 연속성이 일치하지 않음을 보여주는 좋은 예이고요, 그럼에도 불구하고 도함수의 함수값 존재와 도함수의 연속성 사이에는 무시하지 못할만한 관계가 있기도 하다고 알고 있어요.
끝으로, 원함수의 도함수가 반드시 연속일 필요는 없다고 말씀드렸고, 따라서 도함수가 반드시 중간값 정리를 만족할 필요는 없음에도 불구하고, 실제로 도함수가 중간값 정리는 만족시킨다... 라는 것이 도함수의 재미있는 성질이라고 말씀드린 거였어요~ 즉, 도함수가 연속일 필요는 없으나 중간값 정리는 만족한다.
x^2 sin(1/x) 라는 식은 모의고사에서 만난 적이 있는 식인데, 그냥 문제 풀기에 급급하고, 맞췄다고 오답노트도 안했고
그래서 도함수의 연속과 존재로 생각해보진 못했네요 우와 진짜 신세계에요 역시 문제는 단지 풀줄 안다고 해서 다 알고 있다고 생각하면 진짜 오산이네요 ㄷㄷㄷ
신세계를 열어주셔서 감사합니다 !! 적어주신 글 두고두고 읽어봐야할듯여 ,, 데헷