[가형] 따끈한 기벡 투척
약 1시간 전에 만든 ㅎㅎ 뜨끈뜨끈한 문제에염
오류 점검을 별로 못해서 .. 혹시나 오류 있으면 말씀해주시면 수정하겠슴다 !
헷
문제를 이미 푸신 분들을 위한 Tip
이 정팔면체에 외접(?)하는 사면체를 찾아보세요 ㅎㅎㅎ 이 문제는 사면체에서부터 출발했습니다 !!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅎㅇ 0
-
산울림 회상도 좋지만 터보 회상도 좋음뇨
-
분명 최종 합격자수는 261명보다 훨 많을거임 1차 이미 합격했는데 2차를 또...
-
출산의 의무니 뭐니 필요없다ㅋㅋ 그냥 망하자 ㅋㅋ소중국같다 ㅆㅂ
-
고1 정시러이고 기말 진도 다 나가서 자습밖에 없는데 학교에서 태블릿을 못쓰다...
-
맨날 10시에 인나서 유튜브펨코디시오르비 보다가 저녁에 스카가서 토익공부 30분...
-
우웅 5
우웅
-
객관적으로 그냥 조건이 우수하고 뛰어나서 부러움을 자아내는 그냥 날 초라해지게...
-
물리 버리고 사문 좋은선택일까요? 고2동안 물리 지구 열심히 했고 지구는 항상 잘...
-
취업..? 2
누가 나한테.. 일을 시킨다고..? 그것도 돈주고..? 내가보기엔 허상임
-
인하대 논술 1
인하대 전자공학과 논술쳐야겠죠?
-
맥주깔까 1
흠
-
머먹지 11
1. 버거킹 2. 맥도날드 3. 프랭크버거
-
님들 저 팔취좀 4
똥글싸고싶음
-
(탐구 노베이스+미적노베이스임) (이번 수능 수영 1)
-
읽으면서 뭔 개소린가 하고 어이가 없었는데 하 진짜 ptsd 온다
-
어떻게 생각함? 이 시기 vs 종강 즈음 어느 쪽이 더 나을까
-
시발점 개정 1
예비 고3 시발점 이미 수1수2 2회독 햇고요 이번에 시발점이 개정된다던데 듣는게...
-
양파여고 1
영파여고 지날때마다 영파여고라 들림
-
최재용 교수님이 추천하신 걸 다시 추천하시는 거긴 한데 그래도... 근데 216 쌤...
-
넷플에있음 함 보셈 이거보고 한때 금감원을 꿈꿬ㅅ엌ㅅ다.
-
딱 보던대로 나오네
-
겨울이 그래서 존나게 싫음
-
올해 96안나오는 게 이해안되는디
-
내일이 두렵다
-
손 존나 시렵네 5
분명 안인데
-
[수능은 지식이 아니라 능력을 평가합니다] 여기서 지식은 교과 개념(내용영역)을...
-
제 취향 아닌데 제로레퀴엠 보려고 2기까지 다 봐야할까요.. 하.. 취향 아닌데..
-
가는게 맞겠지요…?
-
치얼스 9
치얼스
-
나혼자. ㅆㅂ
-
심심해... 2
게임도 지루해...
-
정시에서 이월하는게 아니라 그냥 추가적으로 뽑는거죠?
-
허고 싶은 프로젝트가 있었는데 위에서 우리과 업무가 아니라 커트당함^^; 이걸 우찌한담^^;
-
경제 흥미 있으면 가는거 좋을까용
-
기존에 뽑는 261명에서 중복자 빼고 또 261명을 뽑는다는 소리임..?
-
지금 평균 많이 높을텐데 만표가 높기가 힘들듯
-
님들 커뮤를 남자여자로 가를 수 있다고 생각하는거임??? 7
난 일단 아바타이고 렙틸리언도 있고 터미네이터도 있고 크레파스도 있고 다양함
-
담배피면서쓰다가헷갈림뇨..ㅠ ㅠ
-
댓글 ㄱㄱ
-
난 최고야 1
세상에서 제일
-
현우진 도형 0
공통수학 2 도형의 방정식 파트에서 응용되면 자꾸 틀리는데 현우진 도형 강의 들으면...
-
ㅈㄱㄴ
-
아오........ 2년만 더 기다리자
-
숭실대학교 면접 0
숭실대 AI융합학부 면접에서 진로 관련된 과목 위주로 질문하나요?
-
그래서 슬픔……. 연대가고싶은데
-
3일 연속 술
왔어요~~~히히
왔구나 !! ㅋㅋㅋ 낼 모의고사라구 ?? 잘칠거야 ㅋㅋ 내가 수호해줌 ㅇㅇ
오셨군요ㅎㅎ
어제 날짜를 10으로 나눈 수인가요? 12시 넘었으니.. 직선l은 OA랑 평행이고 직선m은 OC랑 평행이군요ㅎ
형님을 진심으로 존경합니다 ㅠㅠ;;; ㅎㅎ
정답 !!!!
답 쪽지로 보내드룠는데;;힝
미안행 ㅠㅠ 오르비가 지금 엄청 느린듯 ;;;
정답이야 !!! ㅎㅎㅎ
풀어볼까여??
네네네 ㅎㅎㅎㅎ
이렇게 수학에 열정 있는 분들을 보니 존경은 제가 표해야 옳은 것 같아요^^ 문제 하나 만드는 것도 엄청 힘든데 히융님 시험 앞두시고 대단..^^
아 ... 혹시나 ... 저를 수능 앞두고 뻘짓을 일삼는 잉여로 아실까봐.... 저 다른 과목 공부도 열심히 하고 있어요 .. 엄청ㅠㅠ
문제 만들기는 수리 기출 분석 및 정석 review 시간에 ... 헤헷 재미있어서 중독될거 같아여 ㅋㅋㅋ
형님 짱 ....ㅎㅎ 저번에 제가 맘대로 풀었던 문제 수정해줌..히히ㅠㅠ
ㅎㅎ 저 말씀이신가요? 언제 그랬는지 기억이 잘 안 나요. 님 작성글 찾아봐도 없고.. 아닌가..ㅋ 아무튼 즐겁게 풀어봅시다ㅎㅎ
ㅎㅎ 형님이 저번에 그 머였지....아 특이 적분 그것으롷ㅎ
힝...안 보여요 어헝~~~;;
히히 검색으로 가렸군;;;ㅎㅎㅎ
답 5인가여?
전 직선 l을 직선OA
직선 m을 직선OC로 대체해서 생각했는뎅
딩동 !! 시간되면, 위에 검은색으로 가려져 있는 퀴즈 풀어보세영 ㅋㅋ 재미있을거임 ㅇㅇ
가장 변의 길이가 짧은 정사면체여야 하나요?
네네네 !!! 아 .. 역시 단박에 알아보실 줄 알았어요 ㅠㅠ 대단하심 !!
사면체 가지고 장난치다가 이거 발견하고 또 도서관에서 소리 지를뻔했어요 ㅋㅋㅋ
아 아직 잘 모르겠는데..
OAB 포함 평면을 밑면으로 하는 정사면체 생각해보니 OCD가 정사면체에서도 정확히 옆면이네요ㅎ
맞아요 맞아요 바로 그 정사면체 입니다 !!!
정사면체의 각 변의 중점을 모두 이어서 만든 정팔면체가 바로 문제의 팔면체 입니다 뙇 !!!!!!
따라서 직선 l과 m은 정사면체의 꼬인위치에 있는 두 변을 포함하는 직선이져 ㅎㅎ
앗 정말 그러네요..ㅎㅎ 신기하게도 딱.. 많이 배워갑니다~^^ 님 덕분에 즐겁게 문제도 풀고 공부도 많이 하고 정말 좋네요~
꺅 감사합니다 !!!
근데 밑에 글에서 ... 경시대회 문제 ,, 에 대해서 공부 방향 조건 같은것도 해주시고 .. 굉장한 분 같아요 ...
syzy 님은 제 머릿속에서 이미 교수님이에여 ..
헐 아닙니다.. 원래 잘 모르는 애들이 꼭 아는 체 하잖아요..ㅋㅋ ㅜㅜ 실제로 제대로 할 줄 아는 건 거의 없어요.. 여러모로 히융님이 훨 대단하세요~ 근데 어쩌다보 여기서 이야기꽃을 피우고 있군요ㅎㅎ 저도 문제 좀 내볼라 했는데 문제 만들기 너무 어렵더군요.. 수능 유형도 잘 모르겠고요ㅋ
하 저는 좌표잡고 평면의 방정식을 이용해서 풀었네요.. 문제 출제의도에는 벗어났지만 위엣분 댓글을 보니 답은 맞은거 같아요 ㅠ 좋은문제 감사드립니다!ㅎㅎ
오오 이렇게 푸시는 분 계시지 않을까 생각했는데 ㅎㅎ 요기잉네여?!! 식이 엄청 복잡해질 거라 생각했는데 .. 계산력 대단하세요 ㅠㅠ 부러움 ㅠㅠ
문제 푸는 시간 단축하시려면 위에 분들이 푸신 방법도 한번 연습해보시면 좋을 거 같아요 ^ ^
히히 저도 평면의 방정식 이용했는데... 하나 구하고 나머지는 대칭이용해서 법선벡터가 금방 나오드라구요. 그럼 겜 끝 히히
아 의외로 좌표 대입해서 푸는 사람이 많구나 .... 또 하나 배움 ... ㅎㅎ
원래 의도는 이과지방치님이 푼 방법입니당 !
딱 1시 전까지만 하구 꺼야지~~히히
안녕히 주무세요 쪽지 보냈어요~~
정말 이런문제들 잘 모아서 잘사용하고 있습니다.
감사합니다.
어떤 문제집에서도 찾을수없는 최고의질을 갖춘 문제들이니
그저 감사.
물론 항상 출처는 밝힙니다.
ps: 정삼각형 oab 를 한면으로하는 정사면체 4개 모아서 적절히 붙인 큰 정사면체지요?
각을 재보면 코싸인이 1/3 하고 -1/3 나오니까 휘어지지않고 매끄럽게 연결되는
진짜 정사면체겠네요. 대단하십니다.^^ 좋은대학 가셔서 울나라 빛내주시길....
우와 .. 어딘가 다른 곳에 저의 미천한 문제를 써주시다니 !! 감사합니다 !
최고의 질을 갖춘 문제라고도 해주시고 .. 황송하게 .. ㅠㅠㅠ 올비분들 너무 친절해서 좋네요 ㅎㅎ
말씀하신 크기의 정사면체가 맞아요 ^ ^ 삼각형 OAB를 한 면으로 하는 정사면체를 문제의 팔면체에다 적절히 붙이면 나오는 ^ ^
그렇게 하면 한 변의 길이가 2 인 정면체 ㅎㅎ
우리 나라를 빛낼 사람은 못되구요 ... 저 .. 일단 입시에 성공해서 칙칙한 제 인생부터 밝게 만들어 보겠습니다 ㅋㅋ
오~ 문제 좋아요 ㅠㅠ
평면 축소 개념 쓰면 쉽게 풀리네요 ^_^ 알파 45도 베타 90도 맞나요? ^^;;
지금 재종반 끊고 혼자 공부하는데 이런분들 덕분에 문제 부족할 날은 없네요 ^_^ 감사하단 생각뿐!
답 정확히 맞으십니다 !! ^ ^
그런데 ... 펴,,평면 축소 개념이 뭐져 ...
제가 놓친 개념인가 해서 사전(정석 ㅋㅋ) 뒤져봤는데 ... ㅠ 안나오네요 ㅠㅠ 어떤 개념인지 설명해주실 수 있나요 ..
어감상 평면을 필요한 부분만큼 잘라서 생각한다는 말 같기도 하고 .. 3차원 공간을 2차원으로 축소해서 생각한다는 말 같기도 하고 ..
평면을 필요한만큼 자르는 개념맞아요!
님 전 그냥 직선 엘 이 직선 OA 이고 직선 m 이 직선 OC 라고 하고 풀었는데 이거 맞나요?? 답은 5나왔구요 각도는 알파가 45 베타가 90 도 나왔어요
평면 OAB 와 평면 O프라임BC의 접선 구할때 우선 OAB 의 평면위에 있는 직선들중에 O프라임BC의 직선과 겹치는 직선을 찾으면 될것같아서 OA 로 했는데 이거 풀이방법 맞나요?
네네 빠른 시간 내에 가장 효율적인 방법으로 문제를 풀기에 딱 적합한 방법이
하르바님이 말씀하신 그 방법이 맞습니다 ^ ^
위에 검은색으로 가려져 있는 퀴즈도 한번 풀어보시면 재미있으실거에요 ㅎㅎ
이 문제의 탄생 배경이 들어있거든요 ㅎㅎ그럼 직선 l과 m이 의미하는 게 어떤 건지 딱 알아차리실 수 있으실거에요^ ^
저는 친구하고 일등급 수학에서 나온 문제 풀어보다가 비슷한 거 만나서 직접 잘라서 붙이고 만들어보기도 했다죠. 진짜 매끄럽게 붙더라고요 ㅎㅎ
우와아 ... 열정 !!!!! 실은 저도 ㅋㅋㅋㅋ 정사면체랑 정팔면체 한 번 오려서 만들어봐??? 고민 하다가 .. 포기했는데 ㅋㅋ
대단한 실천력이시네요 ^ ^b
답은 5 ㅋㅋ
계산으로 풀었네요
다른분들 풀이좀 배우고 가야겠네요
직선 l을 직선OA로 대체한다는게 평면 OAD와 평면 O'BC가 평행하기때문인가요??
네 ^^ 정확히 말하자면 두 직선이 같은 직선은 절대 아닌데요,
문제에서 요구하는 게 직선과 평면 사이의 각도니까
평행한 직선과의 각도를 구하셔도 상관 없기 때문입니다 !! ㅎㅎ
굳
퀴즈 답~
혹시 길이가 2인 사면체의 모든 변의 중점? 그거 이으면 나올것 같아요~
아 여담이지만 나중에 문제집 내셔도 매력넘칠듯요 ㅎㄷㄷ ㅋㅋㅋㅋ
정답입니다 !!!ㅎㅎㅎ
문제집 출판할 실력.......... 전혀 절대 네버 에버 못됩니다 ;;;
헤헷 높이 평가해주셔서 감사합니다 ㅠㅠ
용기백배♥