패러독스paradox (무한등비급수 배운 사람만..)
논리학에서 역설(paradox)은 일반적으로 다음과 같이 정의됩니다.
이러한 역설은 전제가 거짓임을 보이거나,
전제로부터 결론을 이끌어낸 방식이
타당하지 않음을 보이는 방식으로 해결할 수 있습니다.
(여기에 해당하는 구체적인 사례는 맨 아래에 소개해뒀습니다.)
그런데, 전제나 추리방식에 흠 잡을 만한 구석이 없다면?
내키지 않더라도 논리적인 사람이라면 결론을 수용해야 합니다.
(여기에 해당하는 구체적인 사례는 맨 아래에 소개해뒀습니다.)
이게 논리학을 공부하는 이유니까요.
심리학이 어떻게 생각하는가에 대해 다룬다면,
논리학은 어떻게 생각해야 하는가에 대해 다룹니다.
--
다음 3분짜리 영상은 위 짤들의 출처로서,
시험에 나왔거나 나올 수 있는 구체적인 사례가 추가되어 있습니다.
가급적 무한등비급수를 배운 학생들만 보길 바랍니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
하ㅠ
-
아..적당히 해야지
-
님들 과외 어디서 구함 14
답답하네
-
반수하신분들…. 4
반수에 도움되는 조언 한마디씩만.. 부탁드립니다… 무휴반해야할수더 있고요…....
-
안녕하세요! 부산진학지원단 가채점 통계자료와 실채점 결과를 활용하여 '올해는 어떻게...
-
끊어야하는데 하.....
-
오늘은 6승 3패 막판 탑 케틀 후픽 박은 새끼야 다신 만나지말자
-
걍 일러 투척 7
-
문과면 메가패스 2
살 필요가 없지 않나요..?
-
김범준T 0
확통하는 문과 3등급이 듣기엔 어려운가요
-
고전시가 질문 5
제가 답을 고를때는 나열하는거같아서 기대감은 안드러났다고 생각했는데 답지에는...
-
27수능때 과탐 장례식이라 전례없는 핵폭탄과탐 내야되는데 국어까지 불로내긴 좀...
-
자러 갈까요 8
미적을 더 하고 싶기도 사실 한 페이지밖에 안 함뇨..
-
전전은 당연히안되는걸로알고 자전융힙이나 신소재화공쪽이요
-
이동준 강기원 0
예비고3이고 시대 둘다 신청 성공해서 갈수있는데 두분 병행하면 많이 빡셀까요?...
-
기본으로 4그릇 이상먹었고 아직도 카레 8그릇 먹은게 기억남 치킨 1마리 먹어도...
-
지옥2 보면서 느낀건데 유아인 연기는 진짜 대체불가인듯
-
아
-
다들내가많이좋아하는거알지 현실친구가없어서 난너희들밖에없어
-
왜 여자아이들이나오냐 ㅅㅂ 톰보이는 혁오아니냐?
-
고1때 경우의수 잘하긴 했지만 확통은 또 다른 영역이죠? 가르치고 싶어서 공부해보고 싶은데...
-
2주 전에는 1
2시에 자서 7시에 일어나고 하루종일 시발시발거리면서 공부할 체력이었는데 면접준비...
-
병원 가서 ct도 다 찍어봤는데 아무 문제 없다그랬고 한의원가서 한약짓고 공진당도...
-
약대 어디가요?
-
https://orbi.kr/00069878130/%EA%B5%AD%EC%96%B4%...
-
뭐가 더 도파민 폭발임? 수능날 60분컷 적백받고 40분 잠으로 능욕 vs 원하는 사람과 쓰리썸
-
ㅇㅇ?
-
한의대 선택과목 0
오로지 한의대만을 생각하고있습니다.. 일단 탐구는 무조권 사탐을 할것인데 수학은...
-
진짜 이거까지만 먹고 다이어트하는거어떰
-
논술 입실까지 7시간남았다
-
놓쳐서 아쉽네료
-
무조건 정상화 시킬거 같은데 메디컬학과들이 사탐을 반길리 없음
-
운동신경 ㅈ도 없어서 팔굽혀펴기랑 턱걸이밖에 할 줄 아는 거 밖에 없는데 구기...
-
투표좀요 0
어떨지 궁금하네여
-
들어올때 키오스크로 보고 59번자리 누가 선택안했길래 59번자리 내가...
-
용돈 땡겨받게 생겼네 아..
-
작수 미적 81점 백분위 93 올해 확통 81점 백분위 85
-
언매미적 과탐(1+2) 국수 99 영어1 과탐 백분위 92
-
할,멈도 이젠안.되는데,어떡해할까,요?
-
Ainsi bas la vida, Ainsi bas la vida 0
Ainsi bas la vida ainsi bas la vida
-
수학 19번 분명히 41 한 기억이 있는데 가채점표에는 31로 되어있음
-
제가 보기에 좀 꼴사나운 사람들은 오래 못가더라고요.. 부계정 50개 들고가서 고로시했거든요
-
ㅎㅎ
-
그것도 모르고 수2에서 어왜진동안나오지 이랬네..
-
옥린몽 옥루몽 등등이 비연계로 돌아다니겠구나..
-
그 누구도 그 원칙에서 벗어날 수 없고 따라서 언젠가는 너 또한 피비린내를 풍기게 될 것이다.
그리고 논리체제에서는 참인 명제가 완전하다는 증명을 연역적으로 할 수 없음이 증명되었죠
'참인 명제가 완전하다'는 주술호응이 어긋난 것 같습니다..
괴델의 불완전성 정리 말하시는 것 같은데, 그건 수 체계에 대해서 말하는거고, 괴델은 오히려 1차 논리가 완전함을 증명했습니다
수 체계에 한정되지 않고, 어떤 formal system이 존재하여 참이면서 증명될 수 없는 명제를 포함한다는 것을 밝힌 거 아닌가요?
논리학...곤란...
시험에 곤란한 내용이 자꾸 나와서요...
무한등비급수는 중복된 표현인걸로 알고있습니다 급수안에 무한의 뜻이 들어가있어요 참고하시길
흥미롭네요. 근거를 알려주신다면 살펴보겠습니다. (설령 동의첩어라고 할지라도 문제될 건 없는 것 같습니다.)
이랬다가
이렇게 바뀌었습니다.
급수는 수열의 모든 항을 더한 것을 의미해요.
항의 개수가 유한한 급수를 유한급수라 하고, 항의 개수가 무한한 급수를 무한급수라고 합니다. 등비급수의 의미는 등비수열의 합을 의미하고, 무한등비급수는 등비수열의 합에 극한을 취한 것을 의미해서 괜찮습니다.
답변 감사합니다. '급수'의 국어사전 표현이나 영어 표현을 봐도 무한을 함축하는 것 같지는 않더라고요.
아하 저는 인강쌤한태 그렇다고 들었었는데 아니군요 머쓱..
그 분이 맞습니다. 그 분이 저였으면 더 좋겠고 ㅋㅋ
아닙니다. 새 교육과정에서 급수는 무한을 가정하고, 유한한 경우 부분합이라고 정의합니다. 무한등비급수는 등비급수라고 바꿔야 맞고, 등비수열의 합은 유한등비급수라고 하지 않습니다.
저도 이렇게 알고 있어요.
헉 그렇군요 짚어주셔서 감사합니다
새 교육과정에서 그렇게 정의하는군요. 근데 그렇게 정의함으로써 무한급수에서 '무한'이 잉여적 표현이 된다고 해도, 무한등비급수라는 표현이 틀린 건 아닌 것 같네요. 동의첩어는 흔한 현상이니..
(선생님, 틀리고 맞고를 떠나서 올드해보여요. ㅋㅋㅋ)
국민학교 때 -읍니다라고 받아쓰기하던 세대는 조심해야 합니다. ㅠ
제가 올드한 건 팩트이므로 이견이 없습니다..
급수는 걍 수열의 합인데요
제논의 역설 중 아킬레스와 거북이 역설입니다. :)
제논의 역설은 칸토어에 의해 깨지지 않았나요
찾아봤는데 수열의 항의 개수가 유한한 수열의 모든 항을 더한 것도 급수로 포함되서 무한등비급수라고 써도 문제 없는 듯합니다
무한등비수열의 모든 항을 더한 급수니깐요.