수능 수학 만점을 위한 자작문제 1번(수정판)
수능 수학 만점을 위한 자작문제 1번은
만점자 1%의 수능문제 정도의 수준과 형태로
평가원 기출과 교과서를 바탕으로 출제됩니당
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
1.25배속이었네
-
삼밤수 하고 싶은데. 서울대 가고 싶은데 제가 공통은 많이 맞추는데 확통을 못해서...
-
새벽이라 그런지 뒤지게 춥네
-
아이오 못토 조카이 나테 이타이타이노 돈케테 손자이칸지 보쿠보쿠 나가루루루 아이...
-
올해 국어 한거 정석민 문개정, 문상추, 문기정, 비독원, 비원실, 비실독 김승리...
-
잭팟 전형으로 서성한 ㅆ가능?
-
ㅇㅈㅎㅈㅅㅇ 5
-
진학사 기준 402인데 (과탐)가능한 곳이 있을까요?? 내신은 bb 예상합니다.
-
폐 썩어서 빨리 죽어도 상관없는데 걍 성인 되면 피워볼까
-
※ 이 글의 내용은 미천한 일개 작성자의 "느낀 점"에 불과하며 기억 왜곡, 또는...
-
전략적 취침 5
수면매매법시행
-
소레데모 키미모아이스요
-
시대인재 0
대치 단과는 언제 뜨나요?
-
머선일~~~~ 원래는 찌릿해서 얼마 못갔는데
-
호우 0
환전지연없이 안전한사이트입니다 각종이벤트도 진행중이니 즐겨보세요 호우평생주소.,com
-
사탐 하면서 메디컬을 노린다고?? 배아파 쥭겠음 ㅋㅋ
-
오르비언 성적이 잘 뜨길 기도함
-
음슴체로 쓰겠습니다 현역때 최저가 3합 13이라 국수영탐탐순으로 49443받고...
-
아 졸려 죽겠다 3
ㅇㅈ메타고 나발이고 잘까
-
책읽어요 2
재밌을거가타요
-
성적표가 문제임 18
진짜 잠이 안 옴.
-
날이 추워지는데 주변을 녹이는 그런 따뜻함
-
호우 0
환전지연없이 안전한사이트입니다 각종이벤트도 잔행중이니 한번 즐겨보세요 호우평생주소.com
-
지듣노 0
생각보다 들을만한 배드 애플 커버
-
여자되기 4일차 4
야추짜르기
-
커뮤할 때는 이렇게 마음이 편?할 수가 없는데 막상 인스타 들어가면 과거에...
-
질문 받는다 13
진짜 가끔씩 찾아오는 기회임
-
건동홍 안되면 20
그냥 부산대 갈까 건동홍 아래는 부대 버리고 위로 올라갈 만큼 좋은 게 없을 것 같은데
-
지잡대 연세대 ㅋㅋ 14
하다하다 롤하면서 연세대 철학과가 지잡이라는 소리를 다 듣네 ㄷㄷ.. 메디컬 아님 서울댄가 ..ㅋㅋ
-
진짜 조때따 2
인생리셋
-
신촌 자취방 1000/60이면 괜찮은 곳 구할 수 있나요?? 1
저정도 금액이면 그래도 괜찮은 곳 구할 수 있나요? 직방 이런 건 허위매물이 너무...
-
펜 같은 걸 입에 막 물게 된다는 거지
-
화공 과제하다가 6
하루가 끝났어… 공정은 하는게ㅜ아니야
-
왜 이러지
-
은근 실용적일건데
-
화2 1일차 0
오늘 1딘원 끝냈지만 내신때 해논 기억으로 어거지 이해 성공 낼 목표 : 2,3단원...
-
통통이에서 올해 미적으로 처음 갈아타고 25수능에서 4 맞은 미적런데요 한번 더...
-
고민 들어드립니다. 10
고민 맛집. 함께 고민해드려요.
-
수능 난이도 반영해서 자체적으로 예상한 컷인가요? 믿을만한가 싶어서
-
잠들기에 성공할 수 있을 것인지 그리고 5시에 일어날 수 있으ㄹ지..
-
1위먹은이유가있었군.
-
있나요 여기?
-
ㅈㄱㄴ
-
과기대 문과.. 4
과기대 문과는 고속이든 텔그든 낙지든 넉넉하게 잡히던데, 과기대 문과 인식이 어떤지...
-
그거슨 참혹함뇨..
-
5시 기상예정 0
사유는 오늘부터 기말인데 공부를 안 했기 때문!
-
과잠너무이쁜데...
-
군용시계 5
-
기하 재밌네 3
머릿속으로 상상하니까 재밌다이 위치벡터 빙글빙글 히히 벡터 발사 ’삼수‘선정리
-
상상도 오프 있나요? 이감은 진짜 올해 도움 많이 받았는데 3
상상 추천?
문제가 올라와있군요ㅎㅎ
15. 231425153
16. 351414235
(가운데 번호)
출제자의 의도를 파악하지 못 했는지, 두 문항 사이 연계성은 다소 약한 것 같은데..
15. f의 0에서의 우극한 = f의 0에서의 좌극한 = g의 0에서의 우극한 = a_1 + ... + a_n
비슷하게 f의 2에서의 좌극한 = 8 - 1/(n+1)
1에서 연속이므로, a_1 + ... _ a_n = n/(n+1) (여기서 a_n의 극한이 0임을 알 수 있다.)
따라서 주어진 식 = lim 2(a_1 + ... + a_n ) - a_n+1 + 8 - 1/(n+1) = lim 2n/(n+1) - a_n+1 + 8 - 1/(n+1) = 2 - 0 + 8 - 0
16. 조건 다에서 적분(2~4) X^2 f ''(X) dX = 1 (x=X+4 치환). 부분적분하면
1=적분(2~4) X^2 f ''(X) dX = [x^2 f'(x)](2에서 4까지) - 2적분(2~4) xf'(x) dx
한편 구하고자 하는 적분은,
A=적분(-2~0) x^2 g''(x) dx = [x^2 g'(x)](-2에서 0까지) - 2적분(-2~0) xg'(x) dx
두 식을 변변 빼면 우측의 마지막 항은 상쇄( 조건 나로부터.. 조건 가에서 f가 주기함수임도 사용)
1-A = 16f ' (4) - 4f ' (2) + 4g' (-2) = 16 f ' (4) (조건 가로부터 f ' (2) = f ' (-2) = g ' (-2)임을 이용(g가 미분가능하므로))
그러므로 A = 1-16 . (f ' (4) = g ' (0) = 1 이므로.. g가 두 번 미분 가능하다는 사실로부터)