무브
오르비
아톰
내 태그 설정
미푸른 [413800] · MS 2018 · 쪽지
게시글 주소: https://showmethescore.orbi.kr/0003254838
제가 아는건 1 + 1/2 + 1/3 + 1/4 + ... 밖에 ...
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
쪽지 보내기
알림
스크랩
신고
a_n=Ln(1 + 1/n) 은 어떨까요ㅎㅎ 허접하나마 뚝딱 만들어 봤는데ㅎ
발산하는 것이 맞습니다.
괜찬네여 ㅋㅋㅋ
1/log2+1/log3+1/log4+....
sum (1/n번째 소수)=1/2+1/3+1/5+1/7+....
sin1+sin1/2+sin1/3+sin1/4+...
(log1)/1+(log2)/2+(log3)/3+(log4)/4+...
다 대학가면 배우는건가요 ?
네~ 급수의 수렴판정법을 대학 때 배웁니다. 단 소수는 ...ㄷㄷㄷ 피보나치 수열의 역수의 급수가 수렴한다는 걸 증명할 수 있습니다.
소수의 역수의 무한급수는 쫌 신기하네요~~ㅎㅎ
sum_{n=1}^{infinity} 1/(n log n) 은 발산 sum_{n=1}^{infinity} 1/(n (log n)^1+e) 은 수렴. (e가 양수일 때) (1/2)^2 +((1*3)/(2*4))^2 +((1*3*5)/(2*4*6))^2 + ... 은 발산 등등이 있어요. (2/9) + ((2*5)/(9*12)) + ((2*5*8)/(9*12*15)) + ... 는 수렴일까요 발산일까요..ㅎㅎ
비교판정법에 의해 수렴할 것 같습니다. 일단 문제의 급수는 양항급수이고 분자에 있는 수에 다 1씩 더해주면(ex. 2->3, 2*5->3*6, ...) 일반항이 18/(3n+3)(3n+6)=6/(n+1)(n+2)이고 sum(6/(n+1)(n+2))가 수렴하므로 문제의 급수도 수렴할 것입니다.
제가 답글을 못 달았었는데 일반항이 써주신 게 맞나요?^^ 수렴이 맞긴 한데..
앗 계산 실수했네요;; 6/(n+1)(n+2)가 아니라 2/(n+1)(n+2)로 바꿔야 할 것 같아요
아 제가 아예 잘못 생각했군요ㅎㅎ 말씀하신 방법으로 해도 되는군요ㅋㅋ 감사합니다~
2026 수능D - 349
중고등학생 수능+내신 학교별 자체 제작 교재로 진행하는 진짜 전문과외
수능•내신 영어 과외
중3/고1/고2
고려대 경영 졸업생, 수능 및 내신 과외합니다
수학전문과외 친절한예진쌤입니다!
국영수과외
a_n=Ln(1 + 1/n) 은 어떨까요ㅎㅎ 허접하나마 뚝딱 만들어 봤는데ㅎ
발산하는 것이 맞습니다.
괜찬네여 ㅋㅋㅋ
1/log2+1/log3+1/log4+....
sum (1/n번째 소수)=1/2+1/3+1/5+1/7+....
sin1+sin1/2+sin1/3+sin1/4+...
(log1)/1+(log2)/2+(log3)/3+(log4)/4+...
다 대학가면 배우는건가요 ?
네~ 급수의 수렴판정법을 대학 때 배웁니다. 단 소수는 ...ㄷㄷㄷ
피보나치 수열의 역수의 급수가 수렴한다는 걸 증명할 수 있습니다.
소수의 역수의 무한급수는 쫌 신기하네요~~ㅎㅎ
sum_{n=1}^{infinity} 1/(n log n) 은 발산
sum_{n=1}^{infinity} 1/(n (log n)^1+e) 은 수렴. (e가 양수일 때)
(1/2)^2 +((1*3)/(2*4))^2 +((1*3*5)/(2*4*6))^2 + ... 은 발산 등등이 있어요.
(2/9) + ((2*5)/(9*12)) + ((2*5*8)/(9*12*15)) + ... 는 수렴일까요 발산일까요..ㅎㅎ
비교판정법에 의해 수렴할 것 같습니다.
일단 문제의 급수는 양항급수이고 분자에 있는 수에 다 1씩 더해주면(ex. 2->3, 2*5->3*6, ...) 일반항이 18/(3n+3)(3n+6)=6/(n+1)(n+2)이고 sum(6/(n+1)(n+2))가 수렴하므로 문제의 급수도 수렴할 것입니다.
제가 답글을 못 달았었는데 일반항이 써주신 게 맞나요?^^ 수렴이 맞긴 한데..
앗 계산 실수했네요;; 6/(n+1)(n+2)가 아니라 2/(n+1)(n+2)로 바꿔야 할 것 같아요
아 제가 아예 잘못 생각했군요ㅎㅎ 말씀하신 방법으로 해도 되는군요ㅋㅋ 감사합니다~