7모 수학 공통 주요문항 손해설
2022년 7월 모의고사 공통 주요문항 손해설_박민후.pdf
안녕하세요.
저는 고려대학교(안암캠퍼스)에 재학 중이고, 수학을 좋아하는 대학생입니다.
이번 7월 모의고사 공통과목 주요문항 손해설지입니다.
11번: 로그함수와 등비/등차수열 관계 파악
-엮어서 볼 기출
1. 2011학년도 9월 평가원 나형 15번
2. 2018학년도 9월 평가원 가형 16번
3. 2010년 7월 교육청 나형 12번
13번: 차의 함수를 통한 식 작성
- 식 작성에서 가장 우선적으로 떠올려주어야 하는 것은 차의 함수
- 도함수의 넓이를 통해 부정적분의 함숫값 차를 구하는 방식 (특히 넓이 공식 활용)
-엮어서 볼 기출
1. 2020년 3월 교육청 가형 30번
2. 2020년 10월 교육청 나형 30번
3. 2021년 7월 교육청 공통 15번
14번: 지름에 대한 원주각 / 원에 내접하는 사각형
-엮어서 볼 기출
1. 2020년 4월 교육청 가형 19번
2. 2022학년도 9월 평가원 공통 12번
3. 2021년 7월 교육청 공통 20번
15번: 미분가능 조건 계산 및 그래프 해석 / 도함수 정적분 = 함숫값 차
엮어서 볼 기출
1. 2020학년도 사관학교 나형 20번
2. 2020학년도 3월 교육청 가형 30번
20번: 도함수 부호 변화 제거 / f(x)와 f'(x)의 관계 = x(t)와 v(t)의 관계
-엮어서 볼 기출
1. 2022년 4월 교육청 공통 22번
2. 2021학년도 수능 나형 20번
3. 2022학년도 6월 평가원 공통 20번
4. 2003년 수능 나형 16번
21번: 시그마 풀기 / 수열 점화식 조작 / 나열 및 귀납 추론
cf) 21번을 나열 및 귀납적 추론으로 풀고 나서 이 수열이 어떤 방식으로 설계되었는지 궁금해하는 사람이 많은 듯
-엮어서 볼 기출
1. 2021학년도 6월 평가원 나형 28번
2. 2020학년도 수능 나형 21번
3. 2023학년도 6월 평가원 공통 15번
4. 2021학년도 사관학교 가형 18번
22번: 곡선과 직선&접선 / 차의 함수로 인식 / 방정식의 의미 / 삼차식의 세 근의 합 / 복잡한 계산 견디기
엮어서 볼 기출
1. 2022학년도 사관학교 공통 22번
2. 2020학년도 수능 나형 30번
3. 2022학년도 6월 평가원 공통 22번
수고하셨습니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
설첨융가서 1
컴공처럼 전향가능해요? 이러면 얘기가 또 달라지는데
-
통장에 2
181원있음 머지
-
ㅇㅇ 사실 굉장히 잘 만남 살아보면서 느낀건데 능력있는 남자 = 예쁜 여자와...
-
성적 이정도인데 설컴은 안될거 같고 서울대 첨융이랑 연대 컴공이랑 붙으면 어디...
-
공부나 하라는 신의계시인가보다
-
코스트코나 트레이더스 가까움?
-
못지우는애들이 많을까 밖에선 일코하세요
-
[뉴테크] 척수손상 환자 다시 걸었다…뇌 심부자극으로 재활속도 높여 1
스위스 연구진, 보행에 영향 주는 뇌영역 찾아 환자의 뇌 깊은 곳에 전기자극,...
-
마음가짐 공부법 등등 삼수 꿀팁? 있나요
-
1컷이 45인게 주된 의견인거 같아서 ㅠㅠ 1컷이 45일때 44점 백분위는...
-
전문직은 일생을 살아가면서 남들이 자신을 보는 평가, 사회적 시선이 자신의 능력을...
-
좋아요정 뭐임 1
누가 계속 좋아요 눌러주는데
-
아가 기상 7
안뇽
-
2N년 동안 뚜벅이로 살던 냐가 하늘 퍼런 아침부터 운전면허학원에서 기능교육을 받고...
-
동덕여대 이슈 1
때문에 이대랑 숙대 선호도도 타격 있을까요?
-
과탐 가산점 3
과탐 가산점 3%, 5% 가 어느 정도인지 체감이 잘 안 가는데 얼마나 영향을 미치나요?
-
과탐 유지 0
내년 수능 연고 서성한 계약학과 목표로 하고있는데 과탐을 계속 해야할까요?
-
9모 55552 10모 풀 5등급입니다 국어 강기본(2월까지) 강기분 실모 수학...
-
여기는 이제 또리가 점령한다 !
-
17:45 B조 풀리그 T1 VS 농심 21:30 B조 풀리그 T1 VS DK
-
미적분 1년공부 9
현우진 캐스트에서 미적분 1년가지고는 어렵다던데 진짜 그런가요? 미적 안해봣는데...
-
고2 정시 4
현재 예비 고2 이고 고1 내신 4.초중반입니다 지방에 있지만 전국적으로는 평반고에...
-
치대에선 공부시킬게 너무 없어서 깜지쓰기 시킴
-
이 분 뭐임?? 다 맞추셨네 ㅋㅋㅋ
-
초콜릿 크림이 올려져 있는 폭신폭신한 빵이네요. 하지만, 아침 식사로 한낱 초콜릿...
-
춥다 1
아침마다 나오기가 너무 싫어
-
미적 기하 선택 2
예비 고3이고 미적할지 기하할지 고민중입니다 재수는 죽어도 하기 싫어서 1년안에...
-
앗차차 그거슨 의대생이 아니라 여대생이었구요
-
정신병 있으면 군대도 안가 처벌도 안받아 딱히 불이익도 없어 이쯤되면 정신병...
-
기상입니다 여러분
-
오르비의 정상화
-
칼기상 13
베개 없어서 수건 말아서 베고잠
-
어제부터 매일 7시간 이상 공부하려고 합니다 큰 이유는 없고 그렇게 마음을 먹었기...
-
여캐일러 투척 14
4일차
-
모닝일러투척 10
음역시귀엽군
-
어제 2시에자ㅏ서 진짜 즉을거가ㅏ네
-
아침 8시에 자서 오후 5시에 일어나는 삶을 사는중.. 7
그런 의미에서 자러감 좋은밤되세요
-
얼벅이 2
ㅎㅇ
-
사탐런 골라주샘 6
07 이번 결방학때 수학 현우진 ㅈㄴㅈㄴ달릴거고 미적은 노베임 국어 2 영어1...
-
뭐부터보지 2
3D는. 처음이라 잘 몰라
-
기차지나간당 2
As a general rule, historians find it...
-
안녕하세요 12
잘 주무셨나요
-
요즘 불안해서 잠을 안 자려고 하다보니까 오후12시 이렇게 자고 그랬는데 오늘은...
-
이원준t 수업 어떻게 들어야 하냐고 물어보네요... 몇개월 전에 내 모습이 겹쳐보였어
-
잔다르크 0
-
이거 재밌음? 드라마 잘 안 보긴 함
풀이 진짜 깔끔하네ㅋㅋ
감사합니다 ㅎㅎ 학습에 보탬에 되었으면 합니다!
풀이 넘 예뻐요...21번도 나열해서 푸신분들이 많을텐데 sol1처럼 풀어보는것도 필요하다고 생각해요 !! 좋은글 감사합니다
감사합니다 ㅎㅎ 학습에 도움이 되었으면 좋겠습니다 :)
21번 점화식 풀이 a_2=9라고 해서 a_2n=2n+7이라고 바로 확정지을수 없을 것 같습니다.
왜 그렇게 생각하시나요?
(나)조건에 의해 이웃하는 두 항의 차가 항상 홀수입니다. 이를 만족시키기 위해서는 홀수/짝수가 번갈아 나와야 합니다.
a_2n으로 가능한 식은 2n+7과 -2n+10이 있습니다. 이때 a_2 =9이므로 짝수번째 항들은 항상 홀수가 나와야 합니다. 따라서 a_2n = 2n+7로 확정지을 수 있습니다.
오류가 있을까요?
네 맞습니다
풀이에는 안나와있길래요 ㅋㅋ
아^^ 헷갈릴 만한 소지가 있었네요.
저는 (나)조건에서 이웃한 두 항 간의 차가 항상 홀수라는 조건이 있어서 저 말을 줄이고 a_2n을 썼는데, 이걸 읽는 사람의 입장에서는 오해할 수 있을 것 같네요.
감사합니다 ㅎㅎ
문제와 관련된 기출 알려주는 n제같은거 혹시 아시나요?
쭉 보는데 공부하기 진짜 좋아서요ㅎㅎ
드릴에도 가끔 관련 기출 나와있고.. 다른 건 잘 모르겠습니다 ㅠㅠ 아직 본 적 없는 것 같네요.