RC - [수학Ⅱ] 삼차함수 네모박스 _ < 01 다항함수의 도출 및 함수의 이해 (2/3) >
[목차]
1. 다항함수의 도출
2. 다항함수의 도출을 위한 정보
(1) 다항함수 f(x)의 인수가 주어진 경우
① 다항함수 f(x)에 대하여 f(a)=0인 경우
② 다항함수 f(x)에 대하여 f(a)=0, f’(a)=0인 경우
③ 다항함수 f(x)에 대하여 인수 (x-a)의 개수
(2) 다항함수 f(x)의 주어진 정보가 직선 위에 있는 경우
① 다항함수 f(x)의 주어진 정보가 상수함수 y=k 위에 있는 경우
② 다항함수 f(x)의 주어진 정보가 일차함수 y=px+q 위에 있는 경우
3. 다항함수의 이해: 다항함수의 함숫값
(1) 함수 f(x)의 개별 근에 대한 정보가 주어졌을 경우
① 개별 근에 대한 정보가 y=k 위에서 주어졌을 경우
② 개별 근에 대한 정보가 y=bx+c 위에서 주어졌을 경우
(2) 함수 f(x)의 n중근에 대한 정보가 주어졌을 경우
① n중근에 대한 정보가 y=k 위에서 주어졌을 경우
② n중근에 대한 정보가 y=bx+c 위에서 주어졌을 경우
------------------------------------------------------------------------
[이전 칼럼]
RC - [수학Ⅱ] 삼차함수 네모박스 < 00 INTRO (+ 자기소개) >
RC - [수학Ⅱ] 삼차함수 네모박스 < 01 다항함수의 도출 및 함수의 이해 (1/3) >
------------------------------------------------------------------------
※ 수학Ⅱ 문제는 함수의 모양을 정확히 파악하는 것이 중요합니다.
머릿속에 그래프를 그려낼 수 있을 만큼 그래프 개념에 숙달되신 분이 아니라면,
반드시, 옆에 노트 등을 두고 그래프를 그리며 내용을 따라오십시오.
권장사항이 아니라, 필수사항입니다.
------------------------------------------------------------------------
이전 칼럼
[수학Ⅱ칼럼] 삼차함수 네모박스 _ < 01 다항함수의 도출 및 함수의 이해 (1/3) >
에서 이어집니다
(2) 다항함수 f(x)의 주어진 정보가 직선 위에 있는 경우
① 다항함수 f(x)의 주어진 정보가 상수함수 y=k 위에 있는 경우
수능 문제가 매우 친절하게 다항함수 f(x)의 근에 대한 정보를 직접적으로 제공할 수도 있지만,
그렇지 않고 근에 대한 정보를 간접적으로 제공할 수도 있습니다.
그 방법 중 하나가 근에 대한 정보,
즉 다항함수 f(x)에 대해 x축(y=0) 위의 정보를 주는 대신
상수함수 y=k 위의 정보를 주는 것입니다.
이때, 우리는 (1)-①에서와 유사한 방법으로 정보를 정리할 수 있습니다.
예를 들어, 삼차함수 f(x)에 대해 f(3)=3이라는 정보가 주어져 있을 경우,
f(x) = ax³+bx²+cx+d , 27a+9b+3c+d = 3
으로 정리하는 대신
f(x) = (x-3)(px²+qx+r)+3
와 같이 나머지 정보를 정리할 수 있다는 것이지요.
해당 개념을 활용해 예제 하나를 풀어 봅시다.
아주 기본적인 정보 나열을 통해 해당 문제를 푸는 방법은
삼차함수 f(x) = ax³+bx²+cx+d 에 대해
f(0) = -3 이므로 d = -3
f(1) = 3 이므로 a+b+c+d = 3, a+b+c = 6,
f(2) = 3 이므로 8a+4b+2c+d = 3, 8a+4b+2c = 6, 4a+2b+c = 3
f(3) = 3 이므로 27a+9b+3c+d = 3, 27a+9b+3c = 6, 9a+3b+c = 2,
이므로
두 번째 식과 세 번째 식에서 (4a+2b+c)-(a+b+c) = 3a+b = -3
두 번째 식과 네 번째 식에서 (9a+3b+c)-(a+b+c) = 8a+2b = -4, 4a+b = -2,
(4a+b)-(3a+b) = a = (-2)-(-3) = 1
3a+b = b+3 = -3, b = -6
a+b+c = c+1-6 = c-5 = 6, c=11
f(x) = x³-6x²+11x-3 , f’(x) = 3x²-12x+11,
f’(4) = 48-48+11 = 11 (Q.E.D.)
와 같습니다.
그런데, f(1) = f(2) = f(3) = 3 이라는 정보를 단순한 정보가 아니라
f(x)의 근에 대한 간접정보로 이해하게 된다면 풀이가 확 달라지게 됩니다.
g(x)=3 , h(x)=f(x)-g(x) 로 새로운 함수를 정의해 봅시다.
그러면 다음 정보를 활용했을 때
h(1) = f(1)-g(1) = 3-3 = 0
h(2) = f(2)-g(2) = 3-3 = 0
h(3) = f(3)-g(3) = 3-3 = 0
가 되므로, 해당 함수 h(x)에 대해
h(x) = f(x)-g(x) = f(x)-3 = a(x-1)(x-2)(x-3) 으로 정리할 수 있고,
이를 다시 f(x)에 대해 정리하면
f(x) = a(x-1)(x-2)(x-3) +3 으로 정리할 수 있습니다.
이렇게 정리하고 나면 위의 풀이가 다음과 같이 달라지죠.
f(0) = a×(-1)×(-2)×(-3)+3 = 3-6a = -3, a=1
f(x) = (x-1)(x-2)(x-3)+3, f’(x) = (x-2)(x-3)+(x-1)(x-3)+(x-1)(x-2)
f’(4) = 2×1+3×1+3×2 = 11 (Q.E.D.)
위의 문제는 애초에 그렇게 어려운 문제가 아니기 때문에
굳이 문제를 이렇게 풀어야 하는지에 대한 의문이 있을 수도 있겠지만,
이러한 정보를 활용하는 방법은 후반에 삼차, 사차함수 고난도 문제를 풀 때 빛을 발합니다.
‘극댓값 또는 극솟값’에 대한 정보가 나왔을 때 이를 유용하게 사용할 수 있죠.
예를 들면,
“최고차항의 계수가 1인 삼차함수 f(x)가 x=3에서 극솟값 4를 갖는다”
와 같은 발문이 있을 경우,
해당 개념을 완벽히 숙지하고 있고 활용이 가능한 상태일 경우
해당 함수를 바로
f(x) = (x-3)²(x-k)+4, (k<3)
과 같은 방식으로 정리할 수 있는 것입니다.
(자세한 설명을 일부러 적지 않을 테니, 한번 머리를 굴려서 시도해 보시기 바랍니다.)
② 다항함수 f(x)의 주어진 정보가 일차함수 y=px+q 위에 있는 경우
x축과 평행한, 즉 기울기가 0인 직선인 상수함수 y=k 위의 정보뿐 아니라
기울기가 0이 아닌 직선인 일차함수 y=px+q 위에 대한 정보가 주어졌을 경우에도
위와 같은 방식을 활용할 수 있습니다.
특히 함수의 접선과 관련된 문제가 나왔을 경우 해당 개념을 유용하게 활용할 수 있죠.
y=f(x)의 x=a에서의 접선 y=g(x)는 by definition,
f(a)=g(a)이고 f’(a)=g’(a)인 직선입니다.
( 접선의 방정식: y = f’(a)(x-a)+f(a) )
따라서 새로운 함수 h(x) = f(x)-g(x) 를 정의한다면 h(x)는
h(a) = f(a)-g(a) = 0, h’(a) = f’(a)-g’(a) = 0 이라는 특징을 자동으로 만족하게 되지요.
바로 예제를 풀어 봅시다.
최고차항의 계수가 1인 삼차함수 f(x)의 x=2에서의 접선 g(x)는
점 (-1, 1)과 점 (2, 4)를 지나네요.
x증가량이 3, y증가량이 3이므로 직선의 기울기는 1, y절편은 2입니다.
즉, g(x) = x+2 이다.
또한, f(x)와 g(x)의 그래프가 x=2에서 접하고 x=-1에서 만나므로
h(x) = f(x)-g(x) 에 대하여 h(x)는 최고차항의 계수가 1인 삼차함수이고
h(2) = 0, h’(2) = 0, h(-1) = 0 입니다.
따라서 h(x) = f(x)-(x+2) = (x-2)²(x+1) 이고,
f(x) = (x-2)²(x+1)+(x+2), h(0) = (-2)²×1+2 = 6 (Q.E.D.)
이 되겠습니다.
위 내용은 정말
매우매우매우매우매우매우매우매우매우매우 중요하니
꼭 제대로 숙지하실 필요가 있겠습니다.
지금 보기에는 그렇게 어려운 개념이 아닌 것처럼 보일 수도 있고
많은 분들이 이미 어렴풋이 알고 있었던 내용이기도 하겠지만,
해당 개념 및 풀이 방식을 완벽히 이해하고 활용할 수 있을 때
추후 등장할 삼차함수 및 사차함수의 고난도 문제에 효과적으로 접근할 수 있습니다.
만약 수능 수학 고득점을 목표로 하시는 분이시라면,
반드시 해당 내용을 정독하며 복습하고,
다양한 접선 문제들에 적용하여 풀어보시기를 바랍니다.
------------------------------------------------------------------------
RC - [수학Ⅱ] 삼차함수 네모박스 < 01 다항함수의 도출 및 함수의 이해 >
칼럼은 중요한 내용이 너무 많고 전달해야 할 정보도 많아
가독성 및 여러분들의 지구력을 위해
총 3개의 게시물로 작성될 예정입니다.
해당 내용은 단순히 삼차함수 관련 문제를 풀 때뿐만 아니라
모든 수학Ⅱ 문제를 관통하는, 수학Ⅱ 이해의 뿌리가 되는 내용이니만큼
해당 내용을 눈 감고도 머릿속으로 떠올릴 수 있을 만큼
철저히 숙지해두시기를 바랍니다.
댓글과 좋아요 등으로 많은 분들이 유익한 글 볼 수 있도록 도와주시면
글을 작성하는 저에게도, 수능을 함께 준비하는 동지들에게도 큰 힘이 됩니다.
위 내용에 대한 질문이 있으시다면,
사진 등으로 질문 및 피드백이 불가능한 쪽지보다는
제 프로필에 있는 오픈채팅 링크로 들어와 주시면 감사하겠습니다.
다음 칼럼의 주제는
RC - [수학Ⅱ] 삼차함수 네모박스 < 01 다항함수의 도출 및 함수의 이해 (3/3) >
(링크)
입니다.
빠른 시일 내에 돌아오도록 하겠습니다.
감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이게맞음
-
고2때 모고 4번 본거 다합쳐도 50점이 안됨;; 10점 수문장인데 진짜...
-
ㄹㅇㅋㅋ 박효신 닮음
-
손대기싫다
-
. 적당히 일러 몇장정도만 놔두고 나머진 상상할 수 있게 두는게 웹소설의 매력이라고 생각함
-
돌림힘 돌림힘 3
물1때는 계산 별로 없었는데 물2부터는 본격적으로 계산이 많아지는구나...
-
처음에는 충동구매했다고 생각하고 후회했는데 보면볼수록 세상의 풍파를 전혀 겪지 않은...
-
ㄹㅇㅋㅋ
-
딩거 이런 거 걸리면 하루종일 안죽고 상대 패도 어시로 들어가지 내가 막타를 못침...
-
예수님 ㄲㅊ크기는? 15
십작아 ㅋㅋ
-
소심발언임
-
정규분포쪽만 복습하면 될 것 같긴한데 거부감 있으려나요
-
https://link.chess.com/play/BCrDeE 비레이팅 10+5 /...
-
질문해주실분 22
심심
-
국어 1컷-100 미적 100 영어 3 생윤 사문 50 50
-
오운완 2
무분할 헬린이는 오늘도 절뚝거리며 퇴근합니다
-
연프가 뭐임? 21
연대프사?
-
학종말고 교과기준
-
과탐을꼭해야만하는이유를분명하게설득할수있는급이아니라면그냥닥치고사탐을하면+1확률을줄일수있다는것이야.
-
핥아줘 4
누가 내 피부 구석구석 핥아줬으면 좋겠다
-
아풀거존나많내 2
날잡고 수학수특 싹 풀어야겠다
-
시대인재 미적 0
시대인재 미적분 라이브로 들으려는데 강기원 김현우 박종민 중에 누가 좋나요?...
-
연대 공대 사탐 0
작년 언미화지였고 지금 화작 미적 사문에서 한과목 못정하고 있는데 연대 시반,기계공...
-
롤 0
의정리
-
신택스랑 병행할 주간지 ㅊㅊ좀요.. 수능루틴 양 뒤지게많다길래 제 실력으로 뚫을...
-
3모 탐구 10
그냥 순수 피지컬로 볼까 암것도 모르는데 3등급 받을 수 잇나
-
롤 된다 1
ㅇㅇ
-
연프 안보는이유 6
뭔지 모름
-
그거볼바에개씹덕웹소설봄
-
전안풀건데 궁금해짐갑자기
-
메가패스 살까 0
대성은 있는데 민철게이와 함께하고 싶어지는 월요일입니다
-
ㄹㅇ
-
뭐해준다고 70만원이 넘어가냐 ㄹㅇ... 역시 바자관이 답이다.
-
이제 지수추종만 할게
-
유우카님 7
팔취당한줄 알았는데 어디가신거지
-
귀찮음
-
아하하
-
생1 vs 지1 0
이제 고3되는 07이고 작수 원점 언매 84/ 미적 89/ 영어 1/생1 38 /...
-
특유의 기싸움과 끼부리기 못보겠음+그냥 유명해지려고 나온거 같음
-
암기 하나는 진짜 꼼꼼히 잘하는데 이러면 역사 하는 거 맞죠..? 2월부터 할 건데...
-
알찬 삶 2
불알 찬 삶
-
셋 중에 누가 노래 제일 잘함??
-
반수 조졌는데 시골 가면 학벌 비교당할 생각에 자살마려움 큰아빠-설의대 사촌...
-
연애하고싶다 0
주변에괜찮은여성분잇으면소개좀...
-
옯 시간표 제정 2
아니 그동안 가입 후 10일 규정 땜에 글도 못쓰는 상태였는데 눈팅하느라 시간 넘...
-
미적 개념 3
딱히 안 마늠. 개념량때매 안할 이유는 엄는 듯근데 문제 난이도 자체가 확통보다 좀...
-
오늘 집에 남친 데리고왔는데 울더라 ㅋㅋ 누나가 남친 데려왔을땐 그렇게 좋아했으면서
-
궁극의 자만추충이라 저렇게 판깔아주는데에서 인연을 찾는 것 자체가 공감이 아예 안됨...
첫번째 댓글의 주인공이 되어보세요.