칼럼3) 1/2 차이
[이 칼럼은 수능 공부에 큰 도움이 되지는 않습니다.
등차수열의 합 Sn에 대해 깊게 탐구한 글인데요,
관심 있는 분이 아니라면 다른 칼럼 보러 넘어가세요.]
+ 제가 옛날에 쓴 글이라 가독성이 안 좋아요
이 칼럼은
위 칼럼의 속편입니다.
이번 칼럼의 목적은
Sn의 꼭짓점과 an의 x절편이 1/2만큼 차이나는 이유를 기하적으로 설명하는 것입니다.
우선 앞선 칼럼에서 두 가지 정보를 확인해놓았습니다.
1. Sn은 반드시 x축과 두 번 만난다.
2. Sn과 an은 반드시 2개의 교점을 가진다.
이때 언급한 조건이 있었죠?
an의 공차가 양수이고 an의 x절편이 1/2이 아닌 경우를 다루겠다고 했는데,
공차 양수는 별 의미 없이 편의상 정해둔 것이구요
잠시 x절편이 1/2이 아니어야 하는 이유를 간단하게 짚고 넘어가겠습니다.
이 글 맨 위에 있는 공식에 의해 an의 x절편이 1/2이라면 Sn의 꼭짓점의 x좌표가 0이 되는데, S0 = 0이므로 0에서 중근을 가져버립니다. x축과 한 번만 만나는 것이지요. 1번 "Sn은 반드시 x축과 두 번 만난다." 에 위배됩니다.
아무튼 1,2번을 만족하게끔 그림을 그려보겠습니다.
일단 Sn입니다.
Sn의 두 근을 0, 2k라 하겠습니다. 일단 k를 양수라 가정할게요. 즉 왼쪽 근이 0인 것이죠.
Sn의 꼭짓점의 x좌표는 k가 될 것입니다. 그 점에서 미분계수는 0입니다.
여기에 an, 그리고 Sn과 an 의 두 교점 B, D도 표시해보겠습니다.
B의 x좌표는 1, D의 x좌표는 2k+1이 됩니다. (앞 칼럼에서 그 이유를 다룸)
점 B와 D의 중점의 x좌표는 k+1인데요, 함수 Sn 위의 점 (k+1,Sk+1)을 찍어보겠습니다.
점 (k+1,Sk+1)에서 접선도 그려보았는데요, 이 접선의 기울기는 an의 공차 d일 것입니다.
아래 이차함수 성질에 의해서 말이죠!
(이차함수의 유명한 성질)
다시 원래의 그림으로 돌아가서
x좌표가 k일 때 미분계수가 0, 그리고 x좌표가 k+1일 때 미분계수가 d라는 것은,
x좌표가 k+1/2 일 때는 미분계수가 d/2임을 의미합니다.
한편, 점 O(원점) 과 점 D의 중점의 x좌표가 k+1/2입니다.
이런 상황인거죠. 그럼 점 O(원점) 과 점 D를 이은 직선의 기울기가 d/2라고 말할 수 있겠죠. 아까 써먹은 이차함수의 성질을 역으로 이용한 겁니다.
지금까지 찾은 것들 중 필요한 것들만 따로 그려보겠습니다.
표시한 두 직선은 직선 OD와 an인데요, 둘은 기울기가 각각 d/2, d라서 딱 2배차이 납니다.
기울기가 2배차이라는 것을 다음과 같이 인식할 수도 있습니다.
그림에 표시한 빨간 직선은 점 D와 x축을 수직으로 이은 것인데요, 기울기가 d/2인 직선은 빨간 직선만큼을 올라가는데 x좌표로 2k+1만큼 가야 했으니(점 D의 x좌표가 2k+1입니다.) 그보다 기울기가 2배인 an은 2k+1의 반인 k+1/2만큼만 가면 빨간 직선만큼 올라갈 수 있을 것입니다. 즉, an이 0을 지나는 점이 k+1/2인 셈이지요.
한편 이차함수의 꼭짓점은 x좌표가 k였으므로,
이라 할 수 있겠습니다. an이 0을 지나는 점이 더 오른쪽에 있는 셈이지요.
방금까지 이를 기하적으로 보인 겁니다.
준비한 내용은 여기까지입니다.
이 칼럼은 생각할 거리 하나를 던지며 마치겠습니다.
첫 번째의 경우 y=k가 0을 지나는 지점과, 그 옆에 시그마 결과값인 이차함수 y=n(n+1)/2의 꼭짓점은 x좌표가 1/2 차이입니다.
두 번째의 경우, y=k2이 0을 지나는 지점과, 그 옆에 시그마 결과값인 삼차함수 y=n(n+1)(2n+1)/6의 변곡점은 x좌표가 1/2 차이입니다.
세 번째의 경우, y=k3이 0을 지나는 지점과, 그 옆에 시그마 결과값인 사차함수 y={n(n+1)/2}2의 극대점은 x좌표가 1/2차이입니다.
다항식으로 표현되는 일반항과 수열의 합 사이에서 1/2이 뭔가 의미를 가진걸까요? 가졌다면 어떤 의미이며, 왜 하필 1/2일까요? 혹시 수열의 간격이 1인 것과 연관이 있진 않을까요?
생각해볼만한 주제입니다.
전 다음에 더 좋은 글로 찾아뵙겠습니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
믿고보는무민쓰
무민님..
그저 갓..
이 글은 너무 옛날글이라 왠지모르게 부끄러운 기분인데.. ㅎㅎ
이거까지 읽어주셨네요 ㅋㅋㅋㅋ