수학질문-확률단원(독립사건,배반사건)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
미적 3점짜리까지만 다 풀어지고 4점은 못건드는데 수1 뉴런 수2 뉴런 미적 시발점...
-
님들 언매 66/19 2등급 가능함?
-
하루에 2-3지문정도 꾸준히 풀려는데 뭐가 좋을까여?
-
근데 그땐 스카이말곤 대학라인도 몰랐어서 그냥 첨부터 설컴이 목표였던거같음......
-
동덕 화이팅 1
!!
-
삼수해서 명지대갔는데도 추앙받으면서 사교육계 업계탑 학원에서 강사할수있음 학벌이 전부가아님
-
수능 3년째 2
언매 3~4틀 유지 중이고 전부 2등급이였는데 화작으로 갈아타면 점수 많이 오를 가능성 있다고 봄?
-
그냥 하다보면 되는거 같음 솔직히 공부법 되게 많은데 실천이 잘 안됨 공부법 이런건...
-
미적 2컷 의견이 너무 갈리네 어디에선 원점수 80이면 무조건 2등급이라 하고...
-
지금 시발점 끝내고 자이 기출 푸는데 별 1개짜리 정답률 60퍼 문제도 여러개...
-
공군 군필오수예정 질받 12
ㅈㄱㄴ
-
최저를 물생에서 물지로 맞추려는데 전교1등 친구들 포함 지1을 들어봤던 친구들은 다...
-
글삭하고 탈퇴 준비를..
-
6평 어디서 보지 11
모교는 애매한데
-
집 먼 사람들은 어쩌라는 겨 휴가 출영하면서 가야겠네
-
일단 오늘 하루는 확실히 공부 열심히 하게 됨 순공 시간 처음 재보는데 재는 이유가 있었구나
-
스타벅스 질문 2
아아메 두잔짜리 쿠폰있는데 한잔 한잔으로 나눠먹을수있나용?
-
평가원 #~#
-
"예비 재수생" 고3때 만족할만한 성적 받고 대학 가는건 뭐냐고요? 그분들은 조기...
-
설약을 416.5를 잡고있네 설치를 잘못본줄? ㅋㅋㅋㅋㅋ
-
강아지 6
보고싶구나 집가고싶다 고양이카페도 가보고싶다
-
오엠알 밀린거말고 중복체크나 인식안돼서 오류떴던 경험 있는분있나요 ??
-
닥전인가요? 참고로 여자임
-
사탐 0
사문은 낄건데 정법 생윤 ㅈㄴ고민되네 진짜
-
생윤이랑 할건데 만점목표로 뭐가 더 공부량 많나요? 사문은 도표가 어렵대서 걱정인데...
-
노래방 다녀오겠음뇨 10
1시간 간다
-
수학 과외 질문 1
지금 시발점으로 인강진도나가고 문제풀면서 충분히 느는거같고 만족중이면 굳히 할 필요...
-
일반적으로 얼마정도 쓰는지 궁금해요 주로 어디에 돈을 쓰는지도 궁금해요
-
우리 유격 안함 4
-
이거 단국 인문 낮과는 가능하겠죠?? 원서철에 칸수 떨어진다고들 그러는데 하
-
저점매수on
-
삼수과탐 2
현역 재수 둘 다 생1지1 해ㅛ는데 재수 때 생명 6 9 수능 50 44 45 지구...
-
배설 끝났다. 2
이제 가볼게요
-
물론 전 못 봄.
-
그리고 조용히 무휴학 반수를.
-
“진짜 광기” 0
“....저는 그냥 아서 플렉이에요“
-
저의 빅데이터에서 나온 추론임뇨
-
대학진학해서 그냥저냥 학점 무난하게 챙기면서 노는게 목표라서 아무학과나 추천...
-
우리는 영웅을 기다린다.
-
오늘 콘서트래…
-
아 파트 아파트 아 파트 아파트
-
중국 간 분이 뭐 사줄까하는데 뭘 사달라고 해야하나요 찾아보니까 샤오미 보조배터리가...
-
말장난 없고 뒷통수 안 치고 공부 한대로 점수 나오는.. 동사죠? 자퇴생이라서 시간은 많습니다
-
저 근데 몇살겉음? 10
ㄹㅇ로
-
물리적 세계에서 세 번 어디로든 갈 수 있는 신발이 있다면 4
어딜 가보고 싶은지 적어보고 가시죠
-
광활한 우주에서 보이는 건 너 하나꿈에서 나타나네가 찾던 그 소녀있잖아 over,...
주사위를 다시던진다는 말이 2번째 시행을 거친다는 말이면 두사건은 배반사건이 아니에요
그 2번은 가능한가요?
질문이 무슨뜻인지 잘모르겠어요
밴다이어그램만보고 두사건이 종속인지 판단할수있는 밴다이어그램이 존재하냐는 질문인가요?
조금 다른데
확률이 0이 아닌 사건 A,B가 있을때
A라는사건하고 B라는사건이 종속이다.
이런 명제가있으면 이걸 밴다이어그램으로 그려보시오 하면 그릴수있는건지 없는건지 궁금합니다
그냥 독립이아닌 두사건의 밴다이어그램을 어떤 수치든 대입해서 그리면 되는거아닌가요? 교집합이 없어도 종속이구요
수치가 안정해져있는 임의의 A의B라면(AB는 공집합이아님) 교집합이 있는밴다이어그램을 보면 이게 독립인지 종속인지 판단은 불가한거죠?
아 이제 이해했습니다 감사합니다
1
P(A)는 1/2. P(B)는 1/2. P(A l B)=P(AnB)/P(B)인데 P(AnB)가 0이라서 0.
즉 독립( P(A)=P(A l B) )
이 아님 = 종속 = 독립이 아닌 두 사건을 종속이라고 합니다.
2.
벤다이어그램만으로는 종속과 독립의 여부를 결정하지 못합니다. 서로의 확률을 찾아내서 P(A)P(B)=P(AnB)인지를 따져봐야 합니다.
서로가 배반사건일경우 보통의 사건이라면 독립이 되지는 않습니다. 그리고 독립과 배반에 대해 혼동하고 계신데 독립을 정의하는건
사건 A가 전체사건에 대하여 일어날 "확률"=사건 A가 사건 B가 일어났다는 전제하에 일어날 "확률" 입니다. 사건 B가 일어나든지 말든지 사건 A에 미치는 영향이 없다는게 여기서 나온말인데 무심히 보면 배반사건의 정의(P(AnB)=0)와 헷갈릴수 있습니다만 독립은 어디까지나 "확률이 같음"을 의미하는거고 배반은 "둘 사이의 공통이 없음"을 의미하는 겁니다. 전~혀 다른 두 개념 혼동하지 마세요.
?ㅋㅋㅋㅋ
1. 두개가 왜독립이냐 했냐면
주사위를 던졌을때 짝수가나올사건이 다음번 주사위를 던졌을때 홀수가 나올 사건과 전혀 관계가없어서 독립이라한거에요
제가 정신이없어서 헷갈렸는데 P(AnB)는 0이아닙니다 A와B는 서로배반아니구요
A와B는 독립맞습니다 종속아니구요
그래도 친절하게 답변해주셔서 감사합니다ㅋㅋㅋ
저도 잘못된 풀이를 읽으니까 P(AnB)=0인게 막 당연한거같고ㅋㅋㅋ착각했었는데
님도 똑같이 세뇌당하심 ㅋㅋㅋㅋ저 독립 배반 다 압니다 ㅜㅜ
두 시행을 서로다른 시행으로 보았다면 독립이아니라 독립시행이라고 했어야죠. 그렇다면 저 두 사건은 서로 독립시행인거지 독립여부은 따질수 없다고 하는게 맞습니다. 독립시행이랑 독립도 전혀 다른개념이에요.
독립여부 따질수있는데요..
P(A)=1/2 , P(B)=1/2
사건 AnB를 순서쌍으로 나타내면 (2,1)( 2,3)( 2,5)( 4,1)( 4,3)( 4,5)( 6,1)( 6,3)( 6,5)
따라서 P(AnB)=9/36=1/4
따라서 P(AnB)=P(A)P(B)인데 독립이아니라는건가요?
교집합이라 함은 둘의 집합을 벤다이어그램으로 그렸을때 서로가 공유하는 같은 원소가 있어야 되요. 즉 원소를 나열할때 P(AnB)의 모든 원소는 A에도 B에도 그 모든 원소가 있어야 한다는 뜻이에요.
그리고 짝수와 홀수는 서로가 여사건 관계라서 교집합이 생길수 없습니다.
님이하신건 P(AnB)가 아니라 P(A)P(B)(사건 A와사건 B가 동시에 일어나는 확률)이고 P(AnB)가 0이므로 독립이 아니고 종속이고 서로의 시행이 다른 시행에 영향을 주지 않기 때문에 두 사건이 독립시행인건 맞습니다.
저 교과서풀이 그대로 옮겨쓴건데요
교과서에서 그렇다고 하면 할말없지만 제 생각에는 두 사건을 독립시행이지 독립이라고 보는건 완전 억지인거 같은데 왜 교과서가 독립이라고 했는지는 이해가 가질 않네요. P(AnB)의 정의를 지멋대로 해석했으면서 억지로 두 사건은 독립이라고 우기는거 같은데 한석원한테서 배운 제가 잘못 배웠을수도 있지만 그냥 교과서의 오류일 가능성이 더 크다고 봅니다.
두사건을 독립으로 보는게 왜억지죠 ㅋㅋㅋㅋ
주사위한번던져서 짝수가나오면 다음던졌을땐 홀수나올확률이 증가하거나 감소하나요?ㅋㅋㅋㅋ
저도 작년에 알텍확통들었는데요 님이 이해를 잘못하신듯요
교과서 발췌
어떤 시행에 대한 표본공간 S의 두 사건 A,B는 S의 부분집합이므로 두 집합의 연산을 이용하여 AUB
AnB 를 만들수있고 , 이 집합들은 표본공간의 부분집합이 되므로 새로운 사건으로 이해할 수있다.
이때 사건AUB가 일어난다는 것은 사건 A 또는 B가 일어난다는 뜻이고, 사건 AnB가 일어난다는 것은 사건 A와 사건 B가 동시에 일어난다는 뜻이다.
서울대 수학과 교수님들이 쓴건데 우긴다건가 지멋대로 해석한다니요 ㅋㅋㅋㅋ
님이 오히려 'P(AnB)의 정의를 지멋대로 해석'했다고 볼수있겠네요
밴다이어그램자체를 잘못그렸다고 할수있는데요 밴다이어그램 자체를 순서쌍으로 그렸어야합니다
아아아이제 여기 댓글 그만달게요 쓸데없이 시간너무 많이쓰네요 교과서한번읽어보세요 ㅅㄱ~
같은댓글이 여러개달려서 삭제했습니다~