유명한 극한 조건
나름 알려진 극한 조건입니다. 아시는 거라면 복습차 빠르게 풀어보시고, 처음 보신다면 경험치 쌓기 위해 지금 풀어보세요!
(자작입니다)
극한도 확실히 할 얘기가 많은데, 칼럼 주제로 한 번 다뤄볼까말까 고민 중인 상태입니다.
팔로우해두시면 퀄리티 있고 유익한 자작문제와, 칼럼들을 놓치지 않고 다 확인하실 수 있습니다 ㅎㅅㅎ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
비문학 졸라 어려워요
-
뭔가 설렌다
-
쪽지주세요……. 갖고싶음……
-
하실분 구해요ㅠㅠ 제가보유중 좀떠싸게해드릴게여..
-
MB의 후배가 되어 나라를 이끌어보쟈
-
귀엽긴하네ㅋㅋㅋ
-
기차지나간당 3
아마도
-
인프라의 차이가 아니라 자녀의 교육에 얼마나 조기에 투자하고 적극적으로 투자했냐의...
-
남는 곳은 싹다 술집인데 1월달이 너무 두려워서 못하겠음... 혹시 1월달에...
-
ㅇㄱ ㅈㅉㅇㅇ? 3
https://m.khan.co.kr/article/202304272204025#c2b
-
지금 탐구 개념하고 있고 2주안에 끝내는 게 목표입니다 (물지) 그리고 복습...
-
사문은 고정했고 만백 고려시 생윤/정법/경제 중 3C1 해야하네요...
-
1.국수 선택과목 로또 2.탐구 선택과목 로또 3.원서질 눈치싸움 반박 대환영
-
지금 합격한(합격할) 25학번 의대생들 입학 취소시키자는건데 그렇게 내년에도 계속...
-
“제발 나가줘“ “제발 돌아와줘“
-
일하다 시기를 놓쳤네요ㅠ 지금 순번도 컨설팅 가능할까요?
-
부탁드립니다ㅠ 교차는 당연히 생각하고 있습니다ㅠ
-
칸나 오늘 졸업일이구나 11
-
정병호 내년에 프메 + 원솔멀텍 하려 하는데 대치 현강 생각해보면 일주일에 나올수...
-
1컷 48은 뭐 좆같지만 넘어가더라도 2컷 44 3컷 42? 이건 도무지 인정 못한다
-
얼또기 2
얼리 또리 기상
-
그 과목 못하는사람이라는뜻임?
-
수능친게 엊그제 같은데
-
현역이 정시로 3
부경전충 문과 간거면 잘 간거임?
-
여캐일러 투척 15
3일차(?)
-
홀로 보내게 생겼구만...
-
졸린기상 5일차 1
오늘도 힘내봅세
-
탐구 하나는 생1할건데 나머지 하나를 못정하겠습니다 투포좀요
-
그릇 새로 삼 2
오늘부터 1일1컵라면 하기로 했다
-
연고대 0
07이고 현재 내신 2점대 초 정도인데 정시로 갈거여서 기말부터 버리려고요 생기부도...
-
아무 치대나 가능할까요..?
-
공부좀 불안한 상태로 그만하고 싶음
-
제 주변 의반 친구들은 그냥 안넣고 성적표 기다리길래.. 다른분들은 어떤가요
-
숭배해라 대 르 비
-
ㅈㄱㄴ
-
블부이 기상 4
졸려
-
기상 완료 오늘도 ㅍㅇㅌ
-
의대에서도 본1 내신망하면 휴학하고 내신 리셋했는데 1
고1도 내신 망하면 그냥 리세마라 하는게 재수 삼수 하는것보다 백배는 나아보임...
-
킹받네 지도 내년에 고3이면서 ㅠ
-
오르새쌤 인강 0
커리큘럼 영상이랑 문풀 강의 살짝 보고 맘에 들어서 수강하려는데 듣기로는 인강...
-
킹 덕 여 대
-
의사증원에 반대하는 국민들에게 개돼지같다고 하는게 잘못된 이유 0
개돼지가 조스로 보임?
-
내가 국민들의 생명이 달린 응급실을 버리고 해외여행 가는 이유 0
우리 뽀삐 산후조리 해야함
-
국어 주간지 0
고3 평가원 모고치면 2정도는 나오다가 고중에 아예 공부를 놔버려서 3~4 정도...
-
기차지나간다 2
부지런행
-
생투 1
지투로 바꿀까요 말까요 근데 염기조성 코돈이 일년 더한다고 느는 유형은 맞음??
-
ㅇㅂㄱ 2
또 자고왔어요
-
국숭 이상은 꿈도 안 꾸고 있는데 혹시 이 정도 성적이면 어디 정도 갈 수 있을까요...
-
미치겟네 5
왜잠이안오지
수2를 모르니까 아쉽네 ㅋㅋ
헉 ㅠㅠ
36?
중복도?
중복도?? 가 뭘까요
(가) 조건이 f(x)의 특정 인수가 중복된 개수를 알려주는 식이라서 '중복도'라고 사람들이 불러요
헉 그렇군요 부르는 말이 있는지 처음 알았네요
나름 유명한 극한식은 (가) 조건을 말씀하시는 건가요, 아니면 (나) 조건을 말씀하시는 건가요?
둘 다였습니다.
(가)는 워낙 유명하고...
(나)처럼 절댓값을 처리해야 하는 상황도 빈출되는 상황이죠. 이 문제의 경우엔 바로 인수 두 개가 필요하다는 게 보이지만, 좀 상황을 꼬아서 숨겨두면 되게 어려워지는 부분이라서, 칼럼 주제로 쓴다면 자세히 써볼게요 ㅎㅎ
바로 테일러급수 ㅋㅋ
ㄷㄷ
(가) 조건을 보니 18학년도 6모 21번이 떠오르네요
로피탈써도 계산이 많다는 그 문제..ㄷㄷ
x-1의 제곱 플 x-2의 제곱 맞나요? a=0
36!!
절댓값 기준으로 +-상수가 나오는데 둘이 같아야하므로 a=0
과조건 맞죠?
아뇨! 저기까지 있어야 결정돼요. 왜 과조건이라고 느끼셨나요?
(가)조건에서 2라고 콕 찝어줄 필요는 없어보여서요
그렇지 않습니다. 만약 저 자리에 2가 아니라 1이 들어간다면, 함수는 결정되지 않습니다.
(가) 극한식이 존재한다는 조건만으로는 f(x)가 (x-2)를 인수로 몇 개 가지는지 알지 못합니다.
네 그래서 저라면 b로 두고 1은 안된다고 해도 되는거 아니냐는 뚯이었어요
그렇다면 문제가 과조건이라는 지적은 적절하지 않습니다. 저 문제는 상황을 결정하기 위한 최소한의 조건을 사용하고 있었기 때문이죠.
그렇게 주지 말고 다른 방식으로 줄 수도 있었겠다라고 하신다면
그건 적절한 말인듯 합니다!
허나 저 극한 조건 자체가 제가 만든게 아니라 평가원에서도 기출된 꽤나 유명한 조건이기에, 저는 그대로 사용했습니다.ㅎㅎ
이 게시글의 목적은 기출된 적이 있는 극한조건을 알려드리는 거였어요.
아무튼 의견 감사합니다!
네 제 단어선택이 부적절했네요
좋은 문제 감사드려요
혹시 저기 f(lxl)에서 절댓값을 안넣어도 답은 다르겠지만 문제 자체에 오류는 없는 건가요??
네 오류는 없습니다. 그 경우 답은 100이 되겠네요ㅕ
감사합니다!