[이동훈t] 수능 난문 만드는 법 (+221130, 231122) 수학2, 미적분
2024 이동훈 기출
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
오늘은 ...
최근 수능 난문이
어떻게 만들어 지고 있는 지 ...
알아보겠습니다.
미적분 응시자 분들의 경우
아래의 두 문제의 공통점에 대해서
생각해보신 적이 있으신가요 ?
위는 2022 학년도 미적분 최고난문이고
아래는 2023 학년도 공통 최고난문입니다.
위의 두 문제를 보고
다음의 생각 3 가지의 생각이
든다면 열공하는 학원 강사이거나,
최상위권 수험생일 가능성이 높습니다.
(1) 점(을 좌표평면에 표시한다.)
(2) 계산 때리는 문제가 절대 아니다.
(즉, 그림으로 먼저 접근해야 한다.)
(3) 미적분의 출제 아이디어는
2~3년안에 수학2에서 반드시 출제된다.
위의 세 가지의 생각은
넘나 중요해서 ...
올해 수능에
위의 관점이 출제될 것이냐고
묻는다면
당연히 100 %
YES
입니다.
수능이 다른 시험들과
(즉, 6모, 9모, 학평, 사관, 경찰대)
수 많은 N제, 실모, ...
등과 차별점을 갖는 지점은 ...
(아주 당연해 보이지만)
근본에 대한 물음을
한다는 것입니다.
위의 두 문제에 관련된 기본 이론은 다음과 같습니다.
(아래는 2024 이동훈 기출 수학1 평가원 편에
수록되어 있습니다.)
예를 들어 등식
f(2g(x))=3x --- (A)
이 주어지면, 다음의 생각이 바로 떠올라야 합니다.
점 (2g(x), 3x)는 곡선 y=f(x) 위에 있다. --- (B)
그리고 이를 좌표평면 위에 그림으로 나타내야 합니다. --- (C)
(A), (B), (C)
중의 하나라도 문제에서 주어지면
나머지 두 경우를 쓰거나, 그리거나 해야 합니다.
이제 맨 위의 두 기출문제의 붉은 칸을 다시 써보면
(위)
곡선 y=g(x) 는 점 (2x, 2f(x))를 지난다.
(아래)
곡선 y=f(x) 위의 점 (g(x), f(g(x))에서의 접선의 기울기.
입니다.
그리고 이를 좌표평면에
그림으로 나타내야 합니다.
따라서 위의 두 기출 문제는
문제 풀이의 출발점이 같습니다.
이런 식으로 평가원에서는
미적분에서 출제된 아이디어를
수학2 또는 수학1에 이식하여
최고 난문을 만들어내고 있습니다.
.
.
.
여기까지 설명을 이미 알고 있었다면
안정적인 1등급 또는 만점인 분들이고 ...
조금이라고 처음 생각하는 것이 있다면
2등급 이하 입니다.
이제 두 기출의 풀이에서
실제로 적용해보겠습니다.
(아래의 글은 풀이의 일부를 포함하고 있으므로
문제를 풀고 나서 읽기 바랍니다.)
2024 이동훈 기출 미적분 평가원 편 풀이의 일부입니다.
2024 이동훈 기출 수학2 평가원 편 풀이의 일부입니다.
위의 두 문제를 계산 만으로 푸는 것은
출제 의도를 이해하지 못한 것입니다.
예전과 달리 수능에서는 ...
식, 그림의 풀이 시간의 차이가 큰 문제도
출제하고 있습니다.
이는 출제 가능한 문제가
이미 소진되었음을 의미합니다.
상황이 이러한데 ...
산술적으로 완벽한 풀이를 지향하는
풀이를 고집한다면 ...
수능에서 좋지 않은 결과를
얻을 수도 있습니다.
.
.
.
이처럼 교과 과정의 중요한 개념은
매년 반복 출제되고 있으므로
(그것도 최고난문으로)
...
무엇인가가 반복된다 ?
그것은 우연이 아닙니다.
평가원이 여러분에게
보내는 메세지 입니다.
오늘 하루도
열공하세요 ~!
ㅎㅍ ~!
2024 이동훈 기출
2024 이동훈 기출 실전이론 목록
2024 이동훈 기출 문항수, 페이지 수
아래의 5 타이틀은 판매 중입니다.
2024 이동훈 기출 + 개념 수학Ⅰ 평가원 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 + 개념 수학Ⅱ 평가원 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 수학Ⅰ+수학Ⅱ 교사경 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 미적분 교사경 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 + 개념 미적분 평가원 편 36,000원 (오르비 할인가 32,400원) 판매 중
아래의 2 타이틀은 전자책만 출시됩니다.
2024 이동훈 기출 + 개념 기하 평가원/교사경 편 4월 중
2024 이동훈 기출 + 개념 확률과 통계 평가원/교사경 편 4월 중
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
못비빔 ㅇㅇ - 김치찌개 - 1. 비계가 어느정도 있는 돼지고기를 중강불에 볶는다...
-
하루종일 미드/미애니만 보면 ㄱㄴ?
-
이 맹한 눈이 매력 포인트임 맨날 안고잠 푹신푹신해서 너무 좋음
-
어떻게 뉴클레오타이드가 3의배수가 아닐수가있죠? 가공하고나서 14개라는데
-
탄단지 샐러드(편의점샐러드는비추) 햇반200(필수) 후추닭가슴살(존맛탱)...
-
시간이 금방 가네 어떤분이 말씀하신 것처럼 한 7시간 하면 될듯
-
늘 그랬듯이
-
초반 빌드업 쉽게 하려면 덱을 다 알아야되네
-
부모님께서 인강패스비,매달 20만원씩 지원은 해주신다고하셨고 저는 110만원정도...
-
노래 미쳤다 (개좋음)
-
새터 숙소 2
새터가면 n인 1실이라던데 남녀 따로 방 나누는거 맞나요?
-
러닝하시는분 4
맨날하면 머가좋나요 요즘 계속하는데
-
https://2cm.es/NxZg
-
나는 꿈을 절대 상상해서 못 꿈 검은 컴퓨터 프롬프트 화면에 텍스트만 나오는...
-
노베이스 4
베이스가 없으면 굉장히 허전할 것 같군요 둥둥 사실 차이가 없다 이게 팩토~
-
다시 공부 시작 0
.
-
범작가 커리 2
재수 범작가 커리 탈려고 하는데 찾아보니까 디시 같은데는 불호가 너무 심하네요.. 실제로 별론가요?
-
처음 배우는 기분은 오랜만임
-
살짝 솔깃했는데 오늘 하는 꼬라지보니까 난 통통이가 맞음
-
천만덕 가쥬아
-
노엘이 감옥에서 만들어온 신곡들 위주로 듣는다고 하니까 오우 허슬 래퍼인데요~...
-
ㅇㅇ
-
진짜 미치도록 귀엽네 22
캬
-
오르비언이라는게 믿기지가 않음 여기서는 ㅇㅇ 맞음뇨 으흐흐 치킨이당 수학 ###...
-
같이 룸카페가서 공부하자. 으흐흐흐흐
-
피시방 정액제가 정확히 어떤 시스템인건가요?? 회원가입하고 몇시간 충전하는거랑은...
-
다른 기출보다 걍 안풀림ㅋㅋ lv1,lv2같은 나머지는 괜찮은데
-
이불 치울려고 발로 찼는데 안에 아이패드를 찬 건에 대하여.. 7
욕나오도록 아프군
-
스토리 올라가면 레전드이긴함
-
한국외대 합격생을 위한 노크선배 꿀팁 [외대25] [대학생활관련꿀팁] 0
대학커뮤니티 노크에서 선발한 한국외대 선배가 오르비에 있는 예비 한국외대학생,...
-
이원준 쌤 잘 그렸나용 15
-
전 화컴 기 신 산공 물리 화학 상경 수학 건도토 지천대 상경 외 문과 아 참고로...
-
https://youtu.be/wJa8Pj-0nx4?si=zhhgauD4w4ertfXx
-
넌 알고 있니 you know 우리가 만난 지 딱 1년째 날이야 그대를 처음 만날...
-
원래 도형 못하면 좀 어려운가요?
-
레전드맛집없나
-
...
-
도파민 필요한데
-
컨텐츠는 넘치고 남의 떡은 다 커보임… 떡 ㅗㅜㅑ 고고? 으흐흐
-
운동도 할 수 있는 드럼을 배우자 덩기덩 쿵 더러러럵
-
별 이유는 없고 그냥 갑자기 궁금해서..
-
너를 떠올리지않게잊을수있게
-
그 바나나 그림자 지문 10
-
진짜 맛있노
-
굳은살 쉽지않네 2
살 다 까지는중
-
새 학기까지 한 달 남았죠. 많은 사람들이 방학을 “역전의 기회”라고 합니다....
-
강기분이랑 시발점 하나씩 놓여져있는게 진짜 현역들한테 메가스터디 파워가 어마어마한듯
-
드디어 작동하네 1
전기랑 회전력을 동시에 먹는데 회전력을 물레방아로 하려니까 택도 없길래 결국...
관점 잘 살펴봤습니다! '미적분의 출제 아이디어는 2~3년 안에 수학2에서 반드시 출제된다.'라는 말이 지금까지의 흐름을 볼 때 크게 틀린 말이 아닌 것 같아 더 와닿아요.