마지막 칼럼들 : 익명으로 올렸던 칼럼
저쪽 갤러리에 올린 칼럼들을 다 내릴까... 고민하다가, 하나는 안 알리고 싶은 스킬이라 내리고, 나머지는 팩트의 정리라 냅두기로 하고 걍 마지막 칼럼으로 올립니다.
1. 미지수가 적어야 좋을까
선 결론 : 가끔 미지수 1개정도 적는게 훨씬 빠르다.
또는, “어떻게 소거될지 알고 있다면” 그냥 미지수를 쓰는게 더 빠르다.
당연히 모든 문제에 대해, 내분, 가중치내분, 기타 비율 이용 미지수 0개 풀이 다 해보고 내린 결론이다.
일단 미지수가 줄어들수록 “순수 풀이 속도”가 감소하는건 동의한다고 가정하자.
물론 특수용례로 작년 수능 20번같이 내분상황이 오히려 복잡한 경우(뒤집어서 해야하고.. 통분도 해야하고..) 미지수 0개보다 1~2개가 계산마저 더 느리긴 한데, 이런 상황은 일단 제외하자. 애초에 이거 내분 왜함
아무튼 미지수가 줄어들수록 순수 풀이속도가 줄어들텐데, 그러면 줄이는게 좋은가?
아니다. 미지수를 줄인다는 것 자체가 “방정식의 소거“를 머릿속에서 미리 하는것이기 때문에 다소 생각시간이 필요하다.
따라서 미지수를 줄일수록 “생각시간”이 늘어난다.
결론적으로 미지수를 줄이면 총 풀이시간이 늘어날수도 줄어들수도 있다는거고, 그 최저점은 사람마다 다르겠으나 내가 학생들 과외하면서 연구한 결과 보통 미지수 1개로 놓고 풀 때가 최저점이다.
미지수 0개 풀이가 보자마자 보이는 사람들이면 논외다. 사실 나도 어지간하면 미지수 없이 푼다. 근데 이런 사람들은 보통 장수생/컨텐츠 제작자/현역의대생 밖에 없다. 그리고 굳이 이렇게까지 빨리 풀 필요도 없고.
+)여담
본인이 듣는 강사가 미지수를 매우 적게 사용하거나 안 쓴다면, 그 풀이를 최종지향점으로 삼는건 괜찮으나 막판 산수에까지 미지수를 안 쓰는 경우 못 따라하겠다면 그냥 이해만 하고 넘어가도 된다. 당장 따라할 필요갸ㅏ 없다.
애초에 강사의 강의를 들으면서 생각해야할 마음가짐은 “와 개쩐다 다 따라해야지”가 아니라 “얻어갈거 있나 함 보자”가 더 옳다.
2. 미지수 잡는게 더 빠른 문제의 예시들
처음에 b=a정도 구하는건 미지수를 잡았다고 하기도 애매하니 패스.
미지수를 하나도 안 쓰고 푸는게 가능하다. 즉 x에대한 식을 구할필요 없이 단순 비례식으로 풀 수 있음. 힌트는 (나)를 H2B + NaOH용액을 기준으로 묽힌 용액이라고 생각하면 된다.
근데 이 생각이 빠를까 x잡고 산수때리는게 빠를까?
반응전 A와 B의 몰수를 계수 a로 표현, 반응 후 C 몰수를 계수 c로 표현하면서 상댓값 잡고 풀면 더 직관적이고 빠르다. 즉 미지수 2개를 쓴다.
추가적으로 실험 1에 곱하기 2 하면 존나쉽다.
물론 반응전 A와 B 몰수를 x, y 이따구로 잡으면 풀이 터진다.
가중치 내분으로는 미지수 0개
선형성으로 미지수 1개
일반풀이로 미지수 2개
가중치 내분 말고는 풀이속도의 차이가 없다.
선형성과 일반풀이, 솔직히 속도 차이 안난다.
가중치 내분은 이 문제 나오기 전엔 없던 스킬이니깐 엄밀히는 뒷북풀이라 논외이다.
3. 이온표 논쟁 정리하면
비 첨가형 유형에선 이온표가 “일반적인 실력인 경우” 더 빠름
이온표 안 쓰는 풀이에 매우 숙달되면 비 첨가형 유형에서도 이온표보다 빠름
첨가형 유형에선 이온표가 대부분의 경우 느림. 문제 상황에 따라 시간차이가 클수도, 작을수도 있고 이온표 그리는 실력에 따라도 갈림
이온표 자체의 근본적 한계는, 대부분의 경우 문제풀이에 쓸모없는 알짜 이온 개수까지 다 적는거때문에 시간이 끌리는거인데
비 첨가형 유형은 해봤자 용액 3개주는거라 큰 문제가 안되고, 오히려 능지 굴리다가 시간 끌림
첨가형은 용액 4개나 그 이상도 주고, 첨가형 문항의 기본 베이스인 선형성이 잘 보이지 않게 되는 이온표가 손해인거
이온표가 확실히 불리한 평가원 문제는 아래가 있다
나머지 평가원 문제는 대부분 큰 유불리가 없다
물론 애초에 이거 이온표로 해설하는 사람 없을정도로 너무 명백한 예시인데..
2206 중화도 연속성이 명백해서 이온표가 불리한 사례중 하나다.
4. 21학년도 7월 학평 20번(중화)
사실 ㄱ, ㄴ 귀류법 때려도 쉽게 풀리지만 생각을 하면서 해보자
+) 그래프에 보이는 첨점으로 푸는 풀이는 패스한다.
++) 과조건 존나많다.
1. 용액 1은 염기, 용액 2는 산성이다. 1~2 사이에서 넣고 있는 산의 음이온 개수는 증가해야 하고, 넣지 않고 있는 산의 음이온 개수는 일정해야한다. 따라서 용액 2를 2:2로 두면 상댓값이 일치한다. 이걸 걍 개수로 두자.
2. 용액 1과 용액 2의 음이온 수 합이 4로 같다. 하지만, 현재 첨가하는 상황이고, 용액 1~2 사이에서 액성이 바뀌었으므로 “전하량 합”은 증가해야 한다. 따라서, 평균 전하량이 증가했다. 즉, 넣고 있던 산은 2가이다. 따라서 ㄱ은 HA, ㄴ은 H2B이다.
(따라서, 용액 1 1:1:2에서, 비율 2에 해당하는게 A-이다. 실제 시험장이라면 이제 문제에 이온을 표기해야한다)
3. 용액 1의 전하량 합은 5, 용액 2의 전하량 합은 6이다. 양이온은 1가 이온 뿐이므로 전하량은 양이온 개수와 같다.
따라서 용액 1의 모든 이온 개수는 9, 용액 2는 10이다.
이온 수 비 9:10인데 몰농도 비 9:8이므로 부피비는 4:5이다.
따라서 V=20이다. (ㄱ X)
4. 5mL 첨가 지점의 모든 이온 개수는 10이다.
설명 : 단순 첨가 상황이므로, 용액 1과 양/음이온 전하량은 같다(둘 다 중화점 이전이므로). 근데 5mL지점이면 아직 2가가 들어오지 않은 상황이다. 따라서 전체 이온 개수는 전하량이 5이므로, 5*2 = 10이다.
5. 용액 2도 이온 개수가 10이므로 용액 2와 비교하면 기분 좋을 것 같다.
5mL 첨가 지점 부피는 25, 용액2 부피는 50이고 이온 개수가 같으므로 몰 농도 합 비는 2:1이다. 따라서 m=16 (ㄷ O)
6. 부피 비 HA:H2B = 1:2로 넣은게 용액 2인데 A-, B2- 개수가 같다. 따라서 몰 농도비는 부피비의 반대인 2:1. x:y=2:1(ㄴ O)
답 4(ㄴ, ㄷ)
설명을 많이 했는데, 님들이랑 나랑 약속이 안 되어있어서 그럼. 님들이랑 나랑 용어적으로 약속을 했으면 풀이는 짧음
5. 제일 빠른 231120 초반부 풀이 및 잡기술
대충 개념은 “공통항의 소거”라고 생각해두던 택틱이고
원래 양적관계에서 반응 후 생성물 몰분율 같을때 쓰던 논리인데
여기서 응용해서 부분적으로 잘 적용됨
3:6
6:2
로 맞추면 부피가 같음
이제 두 비례식 빼면, 비례식 왼쪽항은 3, 오른쪽 항은 4인데 이게 각각 부피가 같아. 따라서 이게 그대로 분자량비. 끝.
이유 설명하면
(가) 3:6
(나) 6:2에서
비례식 왼쪽항 최솟값 3, 비례식 오른쪽항 최솟값 2를 뽑아
즉 3:2를 생각해
이건 실린더 (가)이든 (나)이든 부피가 같을거야
(가)와 (나)에서 각각 3:2를 빼주면, (가) 0:4, (나) 3:0이야
근데 (가)와 (나)는 원래 부피가 같았고, 같은걸 빼줬으니 부피가 같아
따라서 부피가 같은데 그 질량비가 3:4이니 이게 분자량비.
이게 기본 원리고, 결국 결론은 “공통항”을 빼도 같다는건데, 이게 사실은 서로 빼주는거랑 동일한 행위라서 맨 처음 보여준 풀이가 나와.
나는 이거 양적관계에선 “닮은 반응”이라고 부르는데 언젠가 올려볼게. 공통항 소거중 한 부류.
+)사실 윗 설명은 양적관계에서 쓰는 택틱을 양론으로 옮긴 형태의 설명이고
일반적으로 내가 양론에서 많이 쓰는 풀이는 아래임. 아래에서 말할 일종의 꼼수?를 알아두면 좋아. 분자 이름이 너무 기니깐 왼쪽놈 A, 오른쪽 B라 하면,
(가) = A 3g + B 6g
(나) = A 6g + B 2g
으로 그냥 써. 상황이 그러니까.
(가)와 (나)의 부피가 같으니, 부피로 식을 세울거고, 이제 식에다가 이런 의미를 부여해.
A 3g + B 6g -> A 3g의 부피 + B 6g의 부피 (이지만 굳이 표기를 하진 않고 머리속으로 생각)
그대로 식을 전개해
A 3g + B 6g = A 6g + B 2g
A 3g = B 4g
아까 의미부여한걸 생각하면, A 3g 부피 = B 4g 부피.
따라서 분자량비 3:4가 나와.
이거 많이 쓸 수 있을거야.
++) 이 문항 역수이중내분의 경우, 솔직히 “좋은” 풀이는 아니라고 생각함. “평범한” 풀이 정도에 들어가는듯. 내분을 잘하고, 빨리 한다면 이 문제 정석풀이랑 속도가 비슷할수가 있을 것 같음. 이유를 좀 말해보자면...
일단 이 문제만 놓고보면 역수내분은 내가 한 풀이보다도 느리고, 질량을 똑같이 잡고 연립하는 풀이보다도 느림.
저런 형태로 역수내분이 가능한데 숫자가 내분하기 매우 편하고, 되려 부피를 똑같이 맞춰서 풀기 어려웠다면 역수내분이 더 좋을수도 있으니, 단일 케이스만 놓고 주장하지 말라고 할 수도 있음.
근데 역수이중내분이 다른 풀이보다 더 우위라면 일반 대수풀이로는 식이 씹창이나는 상황이라 평가원은 절대 못냄... 평가원은 문제를 출제할때 내분으로 풀라고 상정하고 내는게 아님. 일반 풀이도 충분히 고려함.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
다음의 조건에 해당되는 사람은 정모참여가 제한됩니다 0
1. 물리학I, 물리학II 과목을 응시한 이력이 있는 자 2. 경제 과목을 응시한...
-
내 앞사람이 이 대학을 갈지 저 대학을 갈지 스나를 노리는 나의 주관으로 정할빠에...
-
안녕하세요 오르비 호감고닉 금테 하니 프사 예비의대생 정벽입니다
-
쓰는 사람들 많은 게 다 그렇다는 건 아닌데 의사는 지극히 기술직이고 사람을...
-
내기하자 난 안함 ㅎㅎ 심판해드림
-
삥빵삥뽕뿡 0
진핟사 보기 시러~ 구.차나~
-
그는 최강의 남자다.달리 다른 수식어가 필요할까.
-
메타를 주도하는 질서 그것을 거역할 수 없어
-
못생겼기 때문
-
아마 수능판처럼 몇년 굴러야 괜찮아질거 같음 영 시원찮네 수능문제 대충 고쳐서 재탕 느낌도 좀 나고
-
지금 사고난거 0
유언 해야하나.. 어떤 심정인지 그 안에서 무슨 생각을 하셨을지 어떤 후회를 하시고...
-
정모 공지 1
1. 애니프사 입장 금지 2. 물리선택자 입장 금지
-
메디컬정시는 잘 모르는데 건국대수의대는 어느정도인가요?
-
제발
-
[칼럼] 기출 분석이란 이런 것이다 [3] - 맥락으로 어휘 추론 5
안녕하세요, 수능 국어를 가르치는 적완입니다. 오늘은 2023학년도 6월 인문...
-
여기 존잘남 ㅈㄴ많잖아
-
정모 장소 앞에서 젖지가 대기중 오르비 로그인을 시켜보고 닉이 맞는지 체크한다 이때...
-
삼수생들은 0
부모님 허락 이미 받음?? 나 오늘 성적표 보여주고 말하려는데 용기가 안 남.....
-
1등급은 ㅈㄴ 고이고 나머지는 텅텅 빈 저스트 라잌 투과목
-
술식반전 혁 0
하핫 실패!
-
정모 가자! 2
흐흐 기대되는구만
-
부산대 신설 0
다군 많이 높을까요 ㅡ 자율전공인가 ㅠ그고 ㅠㅠ
-
고학력자들의 모임 현실 틀딱들 집합소
-
초월적 존재로서의 원인은 진성난수를 만들수 있다 그것이 "초월적 존재"라고 불리우는 이유다
-
시발점 듣고있고 평백까진 잘 풀려요 앞으로 시발점-한완기-쎈-수분감 3모 전까지...
-
다른 오르비언으로 사칭해야지
-
성인인증을 할 수가 없네...자꾸 오류가 남.....
-
관리자 사칭해서 남르비 꼬셔야겠다 응응
-
아 진짜 대학 찾기 겁나 귀찮네 하기시러
-
또 정모얘기 나오는거 보니까 신기하네
-
우리 엄마가 친구 말듣고 내이름 으로 보험 가입함 20년납 100세만기에 암보험이나...
-
고려서울성균 1
레쭈고! 내년엔 경희대 쓸수있길 바라며...
-
아 1번 선수 15번까지 단 7분 걸렸습니다~ 2번 선수는 22번을 3줄컷...
-
미래를 대비해서 공부하는 중인데 당장 몇 시간 뒤 어찌될지도 모르고 순간 최선을...
-
20대중반인 제가 지금 고민중인데요 수능봐서 한의대갈지 세무사 시험준비할지...
-
20문제 찍음 ㅋㅋㅋㅋㅋㅋㅋ 근데 어제 토익 공부한다고 했다가 진학사 보느라 공부...
-
인증메타 봐서 모르겟냐 존잘 존예나 인싸밖에 없음뇨 ㅋㅋㅋㅋ
-
정모 시나ㄹ리오 예상 14
다같이 모여가지구 노는데 나는 몬낌 우물 쭈물하다가 누가 닉넴 물어봄 달리기...
-
무료 분양 시켜드림
-
정모메타 뭐지 0
나도갈래
-
닉값 제대로 하노 저거 컨셉이냐?
-
ㄷㄷ
-
피규어나 아크릴 스탠드 가져가면 뺏기나용...??
-
내 세계관 8
다른차원의 초월적 존재가 우리차원의 제1원인으로서 진성난수를 발생시킴 그 결과...
-
번외로 적백이햄들 타임어택 대결은 ㄹㅇ 군침이 도네 10
서바급 난이도로 40분대 기록 나오나?
Dead God.
수고하셨습니다!
내신 때문에 아직 1단원까지밖에 안했는데… 밀도가 9:8이니까 총질량을 처음부터 9:8로 맞춰서 공통항 빼고 바로 분자량 구하는 게 엄청 신박하네요
저는 (질량비 합)/(질량비/분자량 합)을 밀도비로 해서 풀었는데 이 과정 계산 속에서도 같은 논리가 나오네요 이 계산 줄이는 게 화학에선 정말 중요한 것 같아요 <—혹시 이게 정석풀이인가요?
역수 내분은 김준쌤 거 찾아서 봤는데 오히려 복잡해서 유명하다던 역수내분이 저한테 안 맞나.. 했는데 이게 유용할 때가 있고 아닐 때가 있군요
아직 4단원 안해서 모르겠지만… 문제풀이 할 때면 쓰신 글 다 봐야겠네요 정말 유용할듯
그게 정석 맞아요