2024 수능대비 "SUM 모의고사 season2" 배포
23-2 SUM 모의고사 문제지.pdf
23-2 SUM 모의고사 정답표.pdf
23-2 SUM 모의고사 해설지.pdf
SUM 모의고사 Season 2 정오표.pdf
안녕하세요. 서울권 수학교육과 연합동아리 SUMΣ입니다.
저희는 서울에 있는 9개의 학교 수학교육과 학생들이 모여 수학교육 분야에서 할 수 있는 다양한 활동을 하며 교류하는 연합동아리입니다.
(건국대, 고려대, 동국대, 상명대, 서울대, 성균관대, 이화여대, 한양대, 홍익대)
올해 2024학년도 수능 대비를 위한 자작 모의고사를 배포합니다.
SUM 모의고사는 모든 선택과목으로 이루어져 있으며
낯선 상황과 다양한 유형들로 구성되어 있습니다.
오랜 시간 동안의 문항 제작과 검토가 이루어진 모의고사로 믿고 푸셔도 됩니다.
SUM 모의고사와 함께 수능 대비 열심히 하셔서 꼭 좋은 결과 얻으시길 바랍니다.
정오사항
공통 17번, 기하 30번 문항과 공통 20번 해설에 정오사항이 있어 정오표를 업로드합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
합격ㅇㅈ 5
고연전 나와!!!
-
국수영 기준 6모 243, 9모 232 (찍맞 빼면 233)뜨다가 수능 때 443이...
-
취미 비슷한 친구 만들수 있냐
-
논술보러가면 인정이라길래 오늘 학교 결석했는데 보니까 간호는 어제임… 모르는 척 수험표 내볼까 하…
-
좀 전에 올아온 화학 문제는 진짜 왜 부피 저딴 식으로 그려놓음? 0
평가원도 저렇게 뭣같이 그려놓을 때 있음? 아님 네가 모르는 뭔가가 있는 거임?
-
지사의,지방치한 너무 빈 거 같지 않음?평소보다 적은 거 같은데 작년경쟁률 10분의...
-
흐흐
-
걍 죽고싶다 ㅅㅂ
-
근데 겨울 옷이 없음..
-
비바람맞았다 3
어우추워
-
Team04 8
Individual 04가 아님을 보여주자거
-
오티에서 이번수능 19번까지 20분컷으류 막힘없이풀면 뉴분감 하라는데 14 15가...
-
신검때 나라사랑카드 받잖슴
-
대학간판차이 큰가요?? 물론 서카포는 확실히 다르다는건 알고있는데 이과기준...
-
도르래가.. 가장 어려운것 같아요ㅠㅠ 2문제가 안풀리는데 도와주시면 감사하겠습니다..
-
성논 3합5 0
성논 에너지 학과 쓰신 분들 다들 얼마나 푸셨나요 ?? 3합5 맞춘 사람 많았을까요 ?? ㅜㅜ
-
생윤 31 0
3컷 기원,,,,,,!,진짜 제발 나한테 이러지마....
-
에어팟 ㅁㅊ 0
노캔되는 거 27만원이네 어떻게 된 게 갈 수록 가격이 더 오르냐
-
ㄱㅅㅎㄴㄷ ㄱㅅㅎㄴㄷ!!
-
한국능력시험 공부해볼까
-
안녕하세요, 고려대학교 재학생 대표 커뮤니티 고파스의 새내기 맞이단입니다!!...
-
국어 93아님 90인데…
-
롤 새시즌 변경점 읽어야하는데 너무 길어...
-
오르비에도 올라온거 있어요? 출제팀 들가고싶은데 공고가 수능끝났는데도 안보이네요 ㅠㅠ
-
건동홍~국숭세단 라인이나 지거국 경북대, 부산대 쪽 공대 가고싶은데 확통+사문생명으로는 무리일까요ㅠ
-
자율동아리진로에서만 물어봄 공동교육도 3번이나 해서 이건 무조건 물어볼줄 알았는데
-
제가좀 개복치 멸치인데 11
운동 꾸준히하면 체력 길러지는거 체감되나요? 체력똥망이라 어디 멀리 여행가면...
-
‼️[고려대][공식 오픈채팅방] 고려대 25학번 공식 옾챗 오픈‼️ 0
안녕하세요, 고려대학교 재학생 대표 커뮤니티 고파스의 새내기 맞이단입니다!!...
-
4시까지 접수받는다는게 아니죠?
-
아직 뉴런같은 실전개념은 어렵다고 판단하여 기출 1회독 중인데 기출을 충분히 풀고...
-
변표 쓰는거면 0
백분위가 중요한건가요
-
오지콤인듯뇨 2
교수님을 보면 가슴이 욱신함뇨..
-
한달 넘은듯 유산소 너무 유기했나
-
맞나? 글 읽는속도가 빠른편은 아니긴함
-
Team 04 이제 해체됨?
-
ㄹㅇ..
-
아는척좀해봐써여
-
이번 수능 풀어봤냐길래 미적분은 개념 이제 막 끝나서 공통만 풀었다고 말햇은데 그럴...
-
사실이죠? 군대갔다가 재수하냐, 재수하고 군대가냐 차이인듯?
-
작년 70%컷이 952점인데 저도 올해 예상환산점수가 952점이거든여 근데 텔그...
-
속눈썸 정리 어케해야됨요? 자주 빠져서 눈에 들어가는데 걍 손으로 좀 뽑아도 되나요?
-
이탈리아, 오스트리아같은 선진국 의대도 개방됐구나 학비도 엄청 싸다 하는데 의사...
-
2번방에서 질문 하나 어어어어 하다가 다시 답변해도되겠습니까 하고 또 절다가 답변완성함 조졋다 ㅅㅂ
-
서글프뇨
-
4키로 8
ㄹㅇ 저질 체력 돼서 다리가 후들거림..
-
근데진짜공통 4
님들도 작년이 올해보다 어려웠음?
-
이잉 졸려 0
-
과는 어디 가든 상관없어요
와!
안녕하세요
기하 30번의 문제 구성/해설에 궁금점이 있어
댓글을 남깁니다
해설지에서는 부가적인 설명 없이
PQ=OO'임을 사용하여 문제를 해결하셨는데
첨부드린 그림과 같이 PQ<OO'인 경우를
다루시지 않은 이유를 조심히 여쭤봅니다..!
직선 l은 두 구에 모두 접하는 직선입니다. 첨부된 첫 번째 그림은 접하지 않고, 두 번째 그림은 두 구의 반지름이 다릅니다. 직선 l과 직선 OO'은 평행하므로 사각형 OO'QP가 직사각형이 된다는 것을 알 수 있습니다.
xy평면에 수직인 평면을 삼각형 OQR로 생각하고 문제를 다시 읽어 보시면 상황 이해가 빠를 듯합니다.
첫 그림이 접하지 않는다는 것이 이해가지 않습니다. 구에 추가로 그려진 원은 OPQ의 단면이며, 단면에 생긴 원에서 PQ가 접하는 상황을 말씀드리고 싶었기에 추가로 두 번째 그림을 그렸습니다. 굳이 평면 OPQ가 O'을 포함하지 않아도 접선의 경우가 나옴이 저의 요지입니다.
직선 PQ와 OO'가 평행한 것은 납득이 되실까요?
애초에 평행하지 않다는 내용이
제 질문에 함축돼있습니다
조금 더 검토해 보고 답글 드리겠습니다.
그림까지 친절히 그려 주심에 대단히 감사드립니다.
현재 첨부드린 그림에 있는 검은 직선들이
R, P, Q 순서의 조건을 고려하지 않은 상태에서,
두 구에 동시에 접하며,
OPQ가 O'을 포함하지 않게끔 하는
가능한 모든 직선 PQ의 경우입니다.
17번 합성함수 미분법 or 치환적분법 없이 논리적 설명 가능한가요?
단순히 점대칭임을 이용하는건 설명이 부족한가요..?
다항함수 f(x)라고 조건을 주었다면 적당한 그래프 그려 설명하거나 직접 수식 세워 설명할 수 있는데, 기함수라는 조건만 주었기 때문에... 치환적분이나 합성함수 미분이 들어와야 논리적으로 풀이를 작성할 수 있다는 것이 제 생각입니다.
다항함수 조건이 없는건 고려하지 못했네요;;
답변 감사합니다
실제로 우함수/기함수 적분 성질 증명을 미적분에서 치환적분을 학습한 후에 할 수 있기 때문에 문제가 될 부분이지 않나 싶습니다.
교과서 내의 적분 공식들은 함수가 연속인 경우에만 적용할 수 있다고 하므로, 다항함수 조건을 주는 게 맞는 것 같습니다.
썸모 관계자 입니다.
지적하신 바와 같이 다항함수로 고치는 게 맞다고 생각합니다.
관심 가져주시고 지적해주셔서 감사합니다.
안녕하세요
위에 문제에 이의 제기한 사람입니다
답변주신 윗분도 관계자분이실 수 있는데,
확실하게 관계자임을 언급하셔서 댓을 달아봅니다
위 댓글에서 질문드린 내용이 맞는지 확인을 간곡히 부탁드립니다
안녕하세요, 썸모 관계자입니다. 해당 문항(기하 30번)의 오류를 확인하였고, 현재 어떻게 수정하여야 오류가 없을지 논의 중에 있습니다.
답변이 늦어진 점 대단히 죄송합니다.
무료 배포임에도 불구하고 열과 성을 다해 작업해주셔 감사할 따름입니다
내부에서 미처 발견하지 못한 오류를 찾아 주심에 제가 더욱 감사드립니다.
수고하셨습니다!!
공통 20번 해설 마지막 부분에서
f=4x^2-78x+81 이 아니라
f=4x^2+78x+81 아닌가요..?
+ 부호가 맞는데, 해설지 타이핑 과정에서 실수가 있었던 것으로 확인됩니다. 오탈자를 제보해 주심에 대단히 감사드립니다.