2016학년도 난만한+포카칩 오프라인 B형 일부 문항 해설
2016 난만한, 포카칩 수능 직전 모의평가 29,30 해설.pdf
현장 응시자였습니다!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
화환 한뭉탱이 0
아이그냥
-
중앙대 약학대학 신입생 카페 가입 안내 안녕하세요, 중앙대학교 약학대학 제 41대...
-
더 높은 학교 영어영문학과는 성적 맞춰서 간 사람 느낌이 나는데 외대 영문은 뭔가...
-
건동홍 이상 공대는 대부분 미적 사탐까지만인가요?
-
수특 영어 왜 풂? 난이도도 수능보단 쉽지 않나 안풀어본거라 몰루..
-
어떤 정책에 대한 판단은 그것이 가져온 결과에 따라 이루어져야 한다. 정의로운 정책인지 악의가 깔린 정책일지 생각하는 건 제일 큰 실수다. 0
“국민들을 위해서 했다는 의도가 중요한거다!“ “그러면 아무것도 하지 말란...
-
플래4 0포.
-
똑똑하다
-
ㅈㄱㄴ 다른n제랑 비교했을때
-
한약학과니깐.. 근데 한약학과 주제에 왜 과탐가산이 있는거임
-
그래서 난 기출을 안봄
-
맞팔구 4
-
과외 끝남 0
스카가야됨 ㅅㅂㄹ
-
도태한남이라울엇어 ㅜ
-
경희대 의상학과.
-
아니다
-
맞팔ㄷㄱㅈ 8
똥색 기원 1일차
-
ㅈ된건가요
-
확통 풀이 질문 7
이거 1~5 -5~-1 중에 중복조합해서 10H3 했는데 안되는 이유가 뭔가요?...
-
본인 입맛에 안맞으면 몰아가려 하고 글 자체를 이해를 못하는 사람들이 많네
-
다 풀고 틀릴만한 문제 틀리면 1 뜸 해석 : 다 풀고 >시간관리 +문풀속도 확보...
-
엔수하기힘듬?
-
인강 강사 초보 커리부터 따르는게 나을지 아님 마더텅이나 자이로 좀 감을 익히고...
-
오르비 첫글 7
앞으로 동기부여가 필요하다면 들려주세요 해보자 Team07
-
강평ON 8
14만원 존나비싸네
-
영어1등급받는법 6
진심으로응시하지않으면귀신같이1뜸
-
군대에서 공부할 시간 있나요? 있다면 언제 얼마정도인가요 1일1실모 ㄱㄴ? 그냥...
-
고려대학교 - 경영대학 - 정경대학 (통계 제외) - 문과대학 전부 - 공과대학...
-
편의점ㅇㅈ 3
풍족한 연세빵들
-
엠생 재밌네 2
먹고자고놀고
-
오늘 국장 좋네 4
굿굿
-
뽝집중하면 될 수도 잇을거 가튼데
-
수업 선생 다집어치우고 교과서 만으로 풀수있도록 설계해야 함
-
5만원을 드립니다
-
국어 1등급팁 6
좀 주세요
-
ㅇㅈ 1
처음보는라면인데 괜춘한듯
-
ㅈㄱㄴ 하 너무 떨려요… 걍 붙여줘요
-
사문 vs 윤사 0
작수 정법 사문 했었는데 정법은 망했고 사문은 47점 (백분위 98) 나왔음 올해는...
-
영어 1등급 팁 12
나도 모름 진짜 모름
-
굿나잇 0
ㅂㅂ
-
ㅇ
-
ㅁㅌㅊ
-
근데 장점이 더 크겟지 부럽다
-
그냥 항상 자기 자신을 위해 살고 자기가 가장 이득이 되는 일을 하면 되는거야...
-
못하면 기억하게 만들어드릴게요
-
삼육 약 0
685.81 추합 가능할까요? 고려 연세 조기발표 조발
-
요즘 오르비를 많이 안 해서 ㅠㅠ
-
내가 과연 2
외대 최합일지 예비 1~2번뜰지 너무 궁금함 과연 최합을 받을수 있을것인가
-
...^ 쉽지않구나
이거 문제는 어디서 받을수있나요.
http://orbi.kr/0006731700
마지막 문제 30번에서
일단 역함수존재이니까 양수는 보장이 되었구(일단 양끝에서 발산하므로)
2012학년도 30번처럼 어떤실수만 만족시키면 되니까 토미님 해설처럼 역함수의 미분은 어떤실수의 역함수의 역수로서 해석할수있게되고
일단 역함수가질조건이 2e보다크다이고
f'(x1)≤1/f'(x2)인 어떤실수이니까 좌변이 클조건은 극소일때 최소이고 우변도 극소일때 최대이니까 그래사 계산해도 무방한거죠?
토미님 해설이랑 일맥상통하는 이야기이긴한데
2개인변수를 1개인 변수로 줄이는게 근거가 잘 와닫지 않아서요
만약 도함수값의 최솟값이 1보다 크다면
모든 실수 x1 x3에 대해 도함수값이 둘 다 1보다 크므로
그 두 값의 곱이 1보다 작을 일은 없습니다
즉, 도함수값의 최솟값이 반드시 1보다 작거나 같아야만 합니다
2012 수능 30번에서의 '어떤' 구절을 처리하는 방법과 비슷한 논리를 사용하였다고 보면 되겠습니다
아 그렇네요
그럼 제 접근방식도 옳다고 할수있는거죠?
넵 맞습니다!!
변수를 1개로 봐도 무방한지에 대한 조건들을 아직 학습한적이 없어서 혼동이 오는데 변환가능한 시점들을 어떤 방식으로 판단하면되나요?
글쎄요... 이런 논리는 아직 유형화되지가 않아서 자신 있게 말씀을 못 드리겠습니다
다만, 식에 대한 적절한 해석을 통해 두개의 변수에 공통으로 성립하는 성질을 찾아내는 것이 바람직한 접근법이라는 정도는 말씀드릴 수 있겠네요
여튼 감사합니다
많이 배워가네요!
확인했어요! 감사함니다
문의하신 부분 보충설명 추가한 수정본으로 해설지 다시 올라갔어요~
좋아요 누르고 갑니다 수능 전과목 만점받으세요!!
감사합니다~ 좋은 결과 들고 다시 만나 뵙고 싶어요!!
~~~^^ 토미님 때문에 이과로 전과하고 싶어지네욧~~!! ^^!! ㅎㅎ
갓토미님이당
다른거는 다 풀기는 했는데 19번 하나가 안 풀리네요 19번 힌트나 해설 부탁드립니다 글고 문제 참 좋아요! 킬러문제들 퀄이 ㄷㄷ하네요
적분구간 평행이동이 힌트입니다
2-sinx와 2+cosx, 0과 pi/6이라는 적분구간에 주목하세요
저는 27번 부탁드려요.. 공도 무능력자긴한데.. 29번은 1분컷이었는데 27번이 공간지각능력이 부족해서 그런가 작도가 힘드네요..
선분BC의 중점을 점M이라 했을때 각AMD가 수직나오는것만 밝히면 문제 금방 풀려요 선분DH가 1이니깐 삼각형 DMH에서 각 DMH가 특수각 30도가 되기때문에 평면 ABC와 평면a와이루는 각도 합이 90도가 되거든요 그 후에 넓이/넓이로 이면각
다 맞게 말씀하셨는데, 이 경우 삼수선의 정리로 깔끔하게 풀립니다
ADH와 AHM이 같은 평면이라는 걸 알아차렸다면 교선, 수선이 바로 보여요