[이동훈t] 영원히 반복되는 구조+실전개념 (2106가18(나21))
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
오늘은
수능 시험에서
영원히 반복되는 문항 구조,
과목은 다르지만
공통적으로 평가되는
실전개념에 대해서
알아보겠습니다.
전체를 모두 살펴보는 것은
한 개의 칼럼 글에서는 힘들겠고요.
(좀 더 많은 구조 연구+실전개념은
2025 이동훈 기출문제집에 수록된
실전 개념 설명 파트를
참고하시면 됩니다.)
21학년도 6월 모평 가형18 (나형21)
수학1 ㄱ, ㄴ, ㄷ 문제에서 평가된
문항구조+실전개념이
수학2, 미적분에서도
동일한 맥락에서 평가되고 있음을
함께 살펴보겠습니다.
본론 들어가실께요 ~!
힐 위 고 ~!
이 문제를 모두 읽고,
두 곡선을 그리고 나서
아래의 생각들이 바로 들어야 합니다.
(1) 문제에서 주어진 두 곡선을 그리자.
(2) 두 곡선의 두 교점의 x좌표가 모두 -1, 1 사이에 있고,
이차함수 y=-2x^2+2 의 꼭짓점이 (0, 2) 이므로
두 곡선을 바둑판(격자) 위에 그려야 한다.
(이때, 격자를 그리지 않으면 ㄴ을 기하적으로
해석하기 어려울 수 있음)
(3) ㄱ. 사이값 정리
ㄴ. 기울기의 대소 비교 (& 기울기 1)
ㄷ. x1, x2 의 범위 & 2^x = -2x^2 = y 이용
위의 ㄱ, ㄴ, ㄷ에 대한 생각은
사실 그림을 그리지 않았어도
머릿속에 떠올라야 합니다.
어차피 평가하는 것이 정해져 있고,
이는 매우 전형적이기 때문이지요.
요컨대 ...
곡선 2개 -> 교점 -> 경계값(ㄱ), 기울기(ㄴ), 방정식연립(ㄷ)
이게 전광석화 같이
머리를 스치지 않으면
어찌 시험장에서 안정적인 만점을 받으리오 !
참고로
위의 설명은
2025 이동훈 기출문제집의
후반부에 수록된 실전개념에서
모두 다루고 있습니다.
그리고
위에서도 잠깐 언급하였지만 ...
ㄴ에서
y2-y1 < x2-x1
(필충)
(y2-y1) / (x2-x1) < 1
(필충)
두 점 (x1, y1), (x2, y2) 를 잇는 직선의 기울기 < 1(=직선의 기울기)
기울기가 1인 직선을 찾는다.
즉, 연결하면 기울기가 1이 되는 두 점을 찾는다.
는 격자를 그리지 않으면 잘 보이지 않습니다.
특히 3등급 상단~2등급 하단에서
좀 처럼 등급 안오르는 분들은 ...
점 찍어서 그래프 그리는 연습이
많이 부족한 경우가 많습니다.
이거 고치면
최소 3점에서 최대 6~8점까지
오르는 경우가 많으니 ...
그래프를 꼼꼼하게 그리는 연습을
좀 더 하셔야 하고요.
아래는 2025 이동훈 기출의 해설 입니다.
깔끔하죠 ?
ㄱ.
아래는
2025 이동훈 기출 수학1 평가원 편에
수록된 교점 처리에 대한
이론 설명입니다.
자 이제 사이값 정리가 적용된
미적분 문제를 하나 살펴보겠습니다.
10년 전 문제인데요 ...
이 주제에 대한 고전 이라고 봐야겠죠.
ㄱ, ㄴ, ㄷ의 문제 구조에 대해서도
두 개의 곡선 -> 교점(ㄱ)+방정식연립(ㄱ) -> 사이값 정리(ㄴ)
구조가 9년 사이에 바뀌었나요 ?
(순서 정도는 바뀔 수는 있어도 ...)
똑같죠 !
수능은 ...
그냥 never ending, same story 거든.
나 같은 (연습을 많이 한) 사람은
함수 준 것, 문제 구조 보면
딱 보이거든.
어떻게 풀어야 하는지가.
여러분도 이렇게 하셔야 하겠고요 ...
이런 구조에 대한 이해가 없이는
수학을 잘 할 수는 있어도
수능 시험에서 고득점/만점 받는 건 쉽지 않은 일이죠.
그리고 평가원 기출은
(교사경 기출 포함해서...)
반드시 31 년 전체를 풀어 주어야 합니다.
최근 몇 년 간 ...
이렇게 하시면 수능 날 곤란할 수도 있으니.
아래는 맨 위의 수학1 ㄱ, ㄴ, ㄷ 문제의
ㄴ에 대한 해설 입니다.
(수식을 이용한 해설 또한
2025 이동훈 기출에 수록되어 있습니다.)
수식 보다는
역시 기하적인 관점이
좀 더 출제 의도에 가깝다는
생각이 지금도 듭니다.
ㄴ.
아래는 2025 이동훈 기출 수학1에 수록된
볼록성+직선의 기울기에 대한
실전 개념입니다.
이 주제는 미적분에서
도함수/이계도함수의 관점에서
다시 다룹니다.
아래는
맨 위의 수학1 ㄱ, ㄴ, ㄷ 문제의
보기 ㄴ에 대응되는 미적분 문제입니다.
차이점 이라면
볼록성+직선의 기울기 에
평균값 정리가 결합된 것 인데요.
이에 대해서는
2025 이동훈 기출 미적분에서
아주 자세하게 다룹니다.
아래는 위의 ㄷ에 대한 해설.
아래는
맨 위의 수학1 ㄱ, ㄴ, ㄷ 문제의
ㄷ에 대한 해설입니다.
ㄷ.
아래는
맨 위의 수학1 ㄱ, ㄴ, ㄷ 문제의
ㄷ에 대응되는,
이차함수의 대칭성을
이용해야 하는 문제 입니다.
대칭축에 대하여 두 점이 서로 대칭이다.
이 주제에 대한 문제는 워낙 많은데요.
그 중에서도 가장 이 주제가 잘 드러난 문제이고 ...
두 점을 서로 대칭이동시켜보는 연습이
얼마나 중요한지를 알 수 있습니다.
사실 좀 더 깊게 들어가면
곡선 위의 점의 이동 (평행, 대칭)까지
생각해주어야 하기도 합니다.
아래는 위의 문제에 대한 해설.
오늘 다룬 주제들은 ...
2025 수능에서 반드시 나옵니다.
라고 말한다면
굉장히 높은 확률로 맞을 것입니다.
이 주제들을 꼭 익혀두시고 ...
다른 주제들도 완전 정복 하시길 바랍니다.
다음 주에도 또 만나요 ~!
ㅎㅍ~
2025 이동훈 기출 사용법 (+실물사진)
2025 이동훈 기출 실전 개념 목차
(참고로 2025 이동훈 기출은 수분감 + 뉴런 포지션 입니다.)
[이동훈t] 학습법, 수학 칼럼 링크 모음 ('23~'24)
고1 평가원 기출문제집 (PDF 무료 배포)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅇ
-
내옆에는 다쓴 휴지뭉치 밖에 없네....
-
서성한 가능한가요..??
-
아 먼가 두껍고 보드보들하고 따뜻한 잠옷 사고 싶다는 생각 들었는데 11
차피 며칠 입을수 없다는 사실이 떠올라버림 ㅠㅠ
-
힘들까요..? 어디까지 지원 해볼만 할지 궁금해요..!
-
영어1맞고가면배가아프기때문
-
오 4
블라됐다!
-
요번에 혼자 알바하면서 반수했다는데 대박남. 전적대가 한의대인데 의대 성적 받아서...
-
사문 옛날 도표기출 풀때 ? 이게 왜 어렵다는거지 생각들면 경제 하면됨 무조건 고득점 간응
-
궁예질 하는 중 0
EYE IS ONE
-
짧다면 짧고, 길다면 긴 2년이란 시간 동안 짝사랑했다 2학년 여름 어느 날,...
-
물론 칼럼올릴 실력도 아닌것같긴 해요.. 네
-
22도 어디가쒀
-
진학사 1
진학사 지금 나오는 대학별 환산점수가 사과탐 가산점 반영한 점수인가요..?? 너무...
-
사문 44 45 47(84 92 98예상) 한지 42 42 48(9초반 80...
-
언제든 나가서 개원할 수 있으니 자유롭다 (O) (대부분 전문직 공통) 개원의는...
-
무휴반 주의사항 0
반수한다는 걸 티내면 안됨.. 이해하는 사람들도 있겠지만 티가 나면 알게 모르게...
-
법적으로금지해야..
-
질받 8
야해요
-
지에스25 마롱 티라미수라던가 라라스윗 티라미수라던가 먹어본사람 있음?
-
쌍욕한사람한테서 편지옴 44
-
아카네빵 맛있던데 안타까움
-
질받하고 싶러 6
어어ㅜ우
-
한때는 예약구매 몇천명씩 대기해서 샀던건데 그래서 더 맛있게 느껴졌나 ㅋㅋㅋㅋㅋㅋ...
-
47이라 자격 박탈당함뇨
-
내게 성적표를 다오 날 저 깊은 나락의 구렁텅이로 떨어뜨릴 성적표를 어서 다오
-
현재 고3이고 부모님이 며칠전에 이혼하셨는데 경제적 사정이 많이 안좋아지면서 공부의...
-
선넘질받 29
안녕하세요 슬픈부엉이에요 질문해주세요 심심해요
-
초월석없애 크아악
-
내가 하는겜은 2
아무도 같이 안해줌
-
애들 너무 속도가 빠른데
-
하.. 인싸되고싶어울었어
-
홈트 40분완뇨 1
좀 더 하고 씻고 자야겟음뇨
-
흠..
-
재고가 어느 지점에나 쌓여있음
-
저도 질받 7
아무거나 고고
-
매수실시
-
제 친구가 한양대 다니는데 학교에서 과외 연결 해줬다는데 한양대는 원래 그런가요?...
-
손 시렵지만 15
오르비를 멈출수 없는나
-
이짓거릴안한다면 더 빠르게 읽을수있을거같은데 예전부터 이래왔어서 뇌빼고 나무위키나...
-
언매미적영어물리지구 100 96 1 48 42 인설의 가능한 점수인가?
-
이재용
-
상위 직종비율은 이과 65 : 문과 35다 그랬으면 좋겠네요 ㅋㅋ
-
나도 질받 8
-
놀라운 사실: 10
어제 산 바나나킥 다 못먹음 좀따 방 다 치우고 먹어야지
-
아...
-
13번인가 그 f(x) g(x) 다항함수고 마지막에 정적분 0부터 1/2 구하는거...
-
안됨뇨
감사합니다 도움많이됏급니다