[자작 문항] 6모의 계산 더러움을 반영함
뭐 아마 오류가 있을 수도 있겠으나....뭐 문제는 딱히 없어 뵙니당....
고1 수학+계산 더러움(feat. 내신틱)-> 6평 느낌 반영....
이라고 생각함....
풀이에다가 답 알려주시면 1000덕 드림.....
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
정승제쌤이 어제 롯데월드 간다는건 이미 예견된 일이었음뇨 개때잡 확통 2단원...
-
제가 국어 시간이 오래걸리는 이유가 이거 때문인거 같습니다. 2
예를 들어 8번 문제에서도 1번 선택지에서 "한성순보가 간행된 취지는 서양에...
-
인스타 내리다 떠서 봣는데 H2O의 약자가 뭔가요? 화학고수님 답변부탁드립니다...
-
우리의승리다
-
산속에 난 길이어서 ㄹㅇ 개무서웠음
-
전공탱이라 가야돼...
-
어릴때는 포뇨 아빠가 포뇨 괴롭히는거 때문에 겁나 싫었는데 지금 다시보니까 포뇨...
-
대성은 무조건 수학 1타가 한석원이었던거 같은데
-
난 햇빛만 존나나는데
-
28학년도부터는 정시 100프로로 대학 가는거 없어지죠? 3
내신 구리면 정시길도 막히는.... 그럼 자퇴생이랑 장수생들은 어떻게 되는거지?
-
아아 기대된다 2
나는 어느 대학을 갈것인가!! 어느 지방에서 캠퍼스라이프를 즐길것인가!! 킥킥킥킥킥킥킥
-
예쁘긴하다 햇빛에반사되면더예뻐짐
-
종강하고 클쓰보내고 바로 돌입할 것 식단 + 유산소 + 근력 이렇게 간드앗
-
국어 ㅠㅠㅠ
-
식메추 (식사 메뉴 추천)
-
올해 수능친 현역인데 국수영은 222 뜰것같은데 과탐 물1 지1이 4가 떠서 투과목...
-
나만그냥잤지
-
으흐흐히흐히히 30
화1 죽어라 히흫히히히흐히
-
맛있게. 먹어라.
-
25학년도 의대 모집 정지 (new!) 한의학은 정말 과학적인 학문인가? 의대...
-
수1을 너무 못한다..
-
수능 끝난 지금도 여전히 이해 안 가는 유일한 문제 7
9평 국어 10번 ㅋㅋㅋ.. 틀린 애들은 국어 못하는거란 말 볼때마다 짜증났음 내가...
-
주로 쓰는 손이 좀 박살났는데 ㄱㅊ?
-
공스타 현역들 10
ㅋㅋㅋ 6,9모 엄청 화려한 애 비활타더니 아예 안오네
-
커피는 먹다가 머리가 너무 아파서 이젠 안먹으려고요… 너어무 졸린데 다들 잠 어떻게...
-
이제서야 구렁텅이에서 벗어난다
-
난 엄마 보고 밥이나 해! 라고 큰 소리로 외침
-
얼마나 잘봐야함? 작년 입결로따지면 의대제외하고 서울대수리과학부가 가장 높던데
-
유급이 있는가? > 없는 학교가 있음. (전국 모든 의치한수는 유급 제도를 구비)...
-
물2지1하까..? 14
물2 어때요..? ㅋㅋㅋ....
-
어떤거가 더 공부양적고 쉬울까요 생윤이랑 같이할거에요 내년에 더표점높게 나올...
-
롯데월드 왔는데 4
줄 왤케 김;;
-
자기전에 비타민 B 비타민 c l 아르지닌 카르티닌 타우린 먹고 일어나서 카페인...
-
저 엿같은 정지떡밥 그만좀굴려라 수능 전에 굴리는건 그렇다했는데 수능 후에 굴리는건...
-
의사들이 한의사, 간호사도 못잡는데 정부를 어캐이김 0
의사가 진짜 강했으면 이미 우리나라 한의원 전부 문닫고 간호사는 무급전속노예로 전락했음
-
수업가기싫오
-
오늘부터 아니었나..
-
5%면 꽤 큰거같은데 언미사탐으론 힘들겠죠..? 내신 별로 안좋으면?
-
https://orbi.kr/00070166548/%EC%98%AC%ED%95%B4%...
-
대석열의 알빠노 마인드가 좆으로 보이냐?
-
면허정지 안함 처벌안함 사직서 수리함 책임 안짐 면허정지 안함 엄정대처 안함 휴학...
-
갑자기 요 며칠새 느끼는중 슬슬 수능 이후의 공부들도 해야 할 거 같고 특히 CS...
-
경고 했습니다. 절대 지원하지 마시기 바랍니다. 그냥 서연고도 좋은학교니까 거기가세요
-
더욱 집중력이 향상되는게 아닐까 싶은 잔잔한 음악을 듣거나 껌을 씹거나 펜을...
-
정법 표점 뭐지 2
손해 안 본다며…
-
올핸 좀 정상화당한 거 같은데 작년에 물투화투 5050이면 이론상 수학 2등급도...
-
공대 가려면 수원대 공대가 그나마 나을까요? 가천,경기라인은 안될거같고 외대글캠 자연과들도 못가죠?
-
고경제 안정에 설대 스나 노리고 있을텐데
이런건 왜 반영 크아아아아아악
ㅋㅋㅋㅋ아마 계산하다가 뒷목 잡을 거임....내가 잡음....나도 내 해설 안 봤으면 영영 답 몰랐을 뻔ㅋㅋㅋ
3번으로 찍고싶네요
감각적 직관 a=1 b=4
왜 먹히는 거죠
벅벅
f'(x) = 3k{x - (2a + b)/3}(x - b)
g(x) = k(a - b)²(x - a)
f(x) / g(x)f'(x)
= k(x - a)(x - b)² / 3k²(a - b)²{x - (2a + b)/3}(x - a)(x - b)
= (x - b) / 3k(a - b)²{x - (2a + b)/3}
f(0) = -kab² = -16/27
h(x)는 x = 2에서 불연속이므로 (2a + b)/3 = 2, b = -2a + 6
h(x)는 x = 3에서 불연속, |h(x)|는 x = 3에서 연속이므로
(3 - b) / 3k(a - b)² = -1,
b - 3 = 3k(a - b)²,
-2a + 3 = 27k(a - 2)² → ⓐ
f(0) = -kab² = -4ka(a - 3)² = -16/27,
a(a - 3)²k = 4/27 → ⓑ
ⓐ, ⓑ에 의해
a(2a - 3)(a - 3)² / (a - 2)² = -4
a(2a - 3)(a - 3)² + 4(a - 2)² = 0
2a⁴ - 15a³ + 40a² - 43a + 16
= (a - 1)(2a³ - 13a² + 27a - 16)
= (a - 1)²(2a² - 11a + 16) = 0
∴ a = 1, b = 4, k = 1/27
f(x) = 1/27(x - 1)(x - 4)²
f(5) = 4/27
캬ㅑㅑㅑ
|h(x)|는 오직 x = 2에서만 연속인 게 아니라 불연속인 거 맞나요?
일단 오타인 거 같아서 이렇게 생각하고 풀긴 했는데
넵 오타 맞습니다....수정하겠음뇨