근의 분리 상위호환
과외준비를 하다가 이번 6모 15번과 작년 9모 13에가 어떤 관점이 동일하게 쓰인다는 것을 알았는데요,
특히 9모 13번을 이렇게 푸는 것은 처음 봤다고 하네요.
앞으로 근의분리는 쓰지 마세요. 오늘 알려드리는 이 방식이 근의 분리를 거의 완전히 대체할 수 있습니다
(글 맨 마지막에 조건 달아뒀습니다.)
일단 이번 6모(2025학년도)입니다. 문제를 다 풀진 않을거고, 맨 마지막 부분만 볼게요. (나) 조건을 통해 k=2인 것까지 구한 상황입니다.
k=2니까 g(x)가 미분가능하려면 f(2)=2, f'(2)=2여야 합니다. 최고차항 계수가 1인것도 아니까, 문자 하나만 가지고 식을 세울 수 있습니다.
이렇게 말이죠.
(가) 조건에 의하면, 얘가 x가 2보다 큰 곳에서 항상 증가해야 합니다. 그럼 당연히 도함수 관찰을 해야겠죠.
아, 센스 있게 2만큼 왼쪽으로 평행이동해서 봐도 되는데(저도 풀 때 그렇게 했구요) 헷갈리는 독자도 있을 수 있기에 여기선 그대로 갈게요. 괜히 과정 추가하지 않겠습니다.
아무튼 미분해보겠습니다.
냅다 판별식 쓰면 안 된다는 것은 알고 계실겁니다.
함수가 x축과 두 번 만나지만 x가 2보다 클 때는 x축보다 위에 있을수도 있으니까요.
난 그냥 그렇게 해서 맞았는데? 하시는 분들은 운이 좋으신 겁니다. 이 문제에선 결국 그게 답이긴 하더라구요 ㅋㅋ
여기서 a 범위를 나눠서 푸는 분들도 있습니다.
그건 올바른 풀이지만, 완전히 상위호환인 다른 풀이가 있어요. 그걸 지금 알려드리겠습니다.
일단 부등식에서 모르는 문자가 있는 부분을 넘겨버립니다. 그 뒤에 기하적인 의미를 부여할겁니다.
왼쪽은 완벽하게 그릴 수 있는 이차함수고, 오른쪽은 (2,0)을 지나면서 a에 따라 기울기가 달라지는 직선이죠.
이때 “직선이 항상 이차함수보다 아래에 있어야 한다” 라고 해석해주시면 됩니다.
그럼 기울기가 점점 가파라지다가 딱 접하는 순간까지 가능하겠죠? 그때보다 기울기가 더 커지면 직선이 더 위에 있는 순간이 생깁니다.
반면 기울기가 음수라면 음의 무한대까지 계속 가능할 겁니다.
x가 2보다 큰 곳에서는 여전히 아래에 있기 때문이죠.
그럼 접하는 순간 계산해볼게요.
a는 플마 루트 6인데, 둘 중에서 우리가 원하는 순간은 -루트 6일겁니다. 그래야 빨간 직선의 기울기가 양수가 되기 때문이죠.
a의 범위는 -루트6보다 크다가 되겠네요.
2024년 9평 13번에도 이걸 적용해볼게요.
저도 이렇게 빨리 풀릴 줄 몰랐는데, 아주 빨리 풀 수 있습니다.
얘도 당연히 도함수를 관찰해야겠죠.
연두색 영역에 도함수가 그려져야 합니다. 파란색 함수처럼요.
반드시 (-1,0)을 지나야 하겠네요.
왼쪽 함수에 대입해봅니다.
b=2a-1이 나오겠네요.
도함수의 오른쪽부터 관찰해보겠습니다. 아까 했던 거 똑같이 할게요.
a범위 구했습니다.
왼쪽에서 새로 추가되는 조건은 없습니다. 이미 이 조건만으로도 왼쪽 구간 함수는
y절편이 양수고
(-1,0)을 지나므로
아까 말한 연두 구간에 그려집니다.
우리가 구해야 하는건 a+b의 최대최소 즉, 3a-1 의 최대최소값입니다. a 범위를 아니까 다 구한 셈이네요.
네 여기까지입니다.
부등식으로 인식한 뒤에 약간의 변형을 가해주어서 기하적으로 관찰하는 방법을 알려드렸습니다.
문자범위 나눠서 하는 것보다 훨씬 빠르고 실수 확률이 적은 풀이라 생각합니다.
한 마디 덧붙이자면, a로 묶인 부분이 기하적으로 깔끔하게 해석이 가능할 때 이 방식을 쓸 수 있습니다.
그럼 언제 깔끔한 해석이 불가할까요?
a의 계수가 이차도 있고.. 일차도 있고 이런 식으로 여러 개가 있다면 기하적 의미를 부여하기 힘들 겁니다.
즉 문자 계수가 하나로 한정된 상황에서는
이 방식이 근의 분리를 완전히 대체한다고 말할 수 있겠네요.
다음에 또 좋은 글로 찾아뵙겠습니다. 감사합니다.
0 XDK (+1,010)
-
1,000
-
10
-
당당하게외쳐라 020304050607비켜라
-
물론 서바,강k는 풀었으니까 그건 좀 걸리지만 인/현강은 현우진 시발점 빼면 들은적...
-
야옹
-
한번쯤 줄법도 한데 섹스섹스보지보지
-
의대 증원하니까 난리났는데 이건 만약 한다면 어케될까 의대만큼의 난리는 안 날 것 같은데
-
집가까운데라 다행이다.. 근데 어떻게 나랑 초중고가 다 다를수있지
-
몇년전에 준비하려고 했으나 집안 사정으로 못하고 있다가 집안 사정이 좀 좋아지면서...
-
질받 11
심심
-
안녕하세요 :) 디올러 S (디올 Science, 디올 소통 계정) 입니다....
-
불가능
-
20대의 1/3 이상을 수능 공부에 쓰는 건 손해같음 16
손해가 맞는 것 같음 만약 군대도 안 가고 쌩으로 한 거라면 대학 가서 군휴학 2년...
-
좀 널널해지나?
-
상위권들은 ㅈㄴ 빨리 돌리겠지..........
-
진짜임
-
수준은 5~6등급 정도인데 강기본 고전시가까지 해서 다 듣고 복습했는데. 인강을...
-
독하다 독해
-
국수먹으러옴 1
화풀고 칼럼써야지 후...
-
그냥 개강후 학교행사에 가끔씩 얼굴 내비치면서 안면 트고, 적절히 몇 마디만 나눠도...
-
트럼프 "김정은은 이제 핵보유국…나는 그와 잘 지내" 1
북한을 '핵보유국'으로 명시적 언급 (워싱턴=연합뉴스) 김동현 특파원 = 도널드...
-
ㆍ
-
중앙대 합격생을 위한 노크선배 꿀팁 [중앙대25][중앙대학교 커리어 가이드 (해룡당)] 0
대학커뮤니티 노크에서 선발한 중앙대 선배가 오르비에 있는 예비 중앙대학생, 중앙대...
-
그게 낭만이니까 ㅇㅇ
-
4합5 탐구 평균이었는데 4합5 탐구1로 낮아졌네요 안할꺼지만 의대 사탐도 가능한가요?
-
그니까 이제 핑계를 대자면 조가 좀 많이 잘못 걸림뇨 나랑 동성인 동기가 조에 한...
-
전화추합안되나이거
-
땀 뻘뻘흘리면서 2
어우더워
-
두어번 해봐서 힘들다 혹은 더 이상 할 의욕이 예전만큼 없다는 걸 스스로가 느낀다면...
-
그럼 오티 가면 수시애들은 이미 지들끼리 친해진거임? 3
아오시발 정시 서러워서 살겠나
-
술 먹고싶다 4
-
며칠후에 갑니다 팁 있으면 알려주세요 뒷풀이 안가는데도 친구 사귈 수 있나요? 너무 떨리네요
-
오르비 2
-
사문지구로 볼예정인데 방학때 개념기출까지만 해도되나요? 수학이나 국어가 되게 급해서요;
-
이거 정시차별이여
-
어느 정도 하고 가는 게 도움은 될까요?
-
저는 23수능 화작 컷보고 기겁함
-
마라탕2만원정도먹고ㅡ>도넛 루틴됨 맘먹고찾으면특정되겠네
-
학교 도서관 으흐흐 14
자 이제 도서관에서 절 찾아보세요 절 찾으시면 오늘 저녁 사드립니다
-
원래는 하나하나 꼼꼼히 대조하고 본문 찾아서 풀고 그러는데 카페인 먹으면 걍 감에...
-
고민 좀 더 해볼거같긴한데 하게된다면 수능때 영어 미끄러져서 확실히 잡아두고싶은데
-
집회X발
-
사라지기 4분전 2
잇올.. 그들이 오고있어 시간을 멈춰야만해
-
https://youtube.com/shorts/Moc49qvc08c?si=cMVlP...
-
2025 수능성적표 여기서 시작하는데 매일 1,2년 14시간 순공하면 올 1 되는지...
-
엉덩이가 아파 1
엉덩이 운동 하니까 엉덩이가 아프다
-
ㅇㅇ
-
제일 자주 쓰는거
-
제주도 노잼이네 10
어릴때 이후로 안와서 다시 한번 와봤는데 역시 일본이 더 재밌긴 하네.
개추 눌렀다....
캬
일단 읽어보고 걔추
앞으로도 좋은 글 써볼게요 ㅎㅎ
ㄷㄷㄷ
갑종님이랑 생각이 거의 일치하는...
왜냐면 둘이 친구거등
저도 작년 9평 13번을 이렇게 푸는게 맞다고 생각했어서 근의 분리니 뭐니 말 많을때 잘 이해가 안되긴 했었어요
김현우 선생님이랑 완전히 똑같이 푸셨네요.. 칼럼 잘보고 갑니다!
15번 이거풀때 산술기하로 풀었는데 최솟값이라 풀린거겠죠
6평 말하시는거죠?
산술기하도 괜찮네요. 왜냐면 여러가지 조건이 딱 맞아 떨어져서 여기에 산술기하를 쓸 수 있습니다.
일단 x가 2보다 큰 부분을 봐야 하는데, 그게 x-2>0이어야 하는 산술기하 조건이랑 맞아떨어졌구요,
부등식에서 오른쪽 부분이 상수이기 때문에 최솟값만 보면 됩니다.
물론 좀 더 근본적으로는, 산술기하는 완전제곱식에서 나온 공식이기에 똑같다고 볼 수도 있지만
아무튼 아주 맘에드는 관점이네요!!
넹 6모 15번 x-2>0보다 큰상태여서 이거로 산술기하썼는데
해설강의같은거 보니까 다들 다르게풀어가지고 결국 똑같은이야기였네요
대범준 그래프 분리
첫 문제에서 a=±루트6 구하셨을 때 D/4 공식을 쓰셔는데, 미지수를 (x-2)로 해서 b'²-ac 로 바로 구하신건가요?
아! 근데 그렇게 해도 되는건가요? 제가 고1수학을 날림으로 배워서..
넵, 이해를 도울 수 있는 두 가지 관점을 소개해드리겠습니다
1. 평행이동.
x축과 만나지 않는 이차함수를 좌우로 평행이동해도 여전히 x축과 만나지 않는다. 따라서 해당 이차함수를 2만큼 왼쪽으로 이동시킨다면 3x제곱 +2ax+2이고, 여기에 판별식을 쓰면 된다.
2. 치환
x-2를 t라는 새로운 문자로 잡는다.
사실 1과 본질적으로 같다.
감사합니다!! 저는 x가 변수인 상황에서 판별식을 쓰는데, 2만큼 평행이동을 해도 똑같이 성립이 되는지 궁금했었는데 이해가 되네요! 정말 감사합니다 ㅎㅎ 덕분에 수준높은 풀이법 하나 배워갑니다 . 감사합니다!!
저도 굳이 근의 분리까지 안끌고가고 싶어서
저는 그냥 잘 모르겠으면 화끈하게 근의공식 때리고, 두 근이 모두 k보다 작아야한다면
D >=0인 경우, 그냥 더 큰 근이 k보다 작다! 라고 하게끔 가르쳤는데
기하학적인 풀이도 너무 좋은 듯 합니다 ㅎ
잘 보고 갑니다!
관찰중인 문자의 차수가 여러개가 아닌 이상 (예를 들면 식에 a도 있고 a제곱도 있는 경우), 위 기하적인 풀이가 근의 분리를 완전히 대체합니다
.
의견 공유 감사해요 ㅎㅎ
고정된 요소가 필요하다는 말씀 맞으실까요? 좋은 댓글 감사합니다 ㅎㅎ
오 이거 좋네요. 시간 단축 꿀일 듯.
+ 이번 6평 14번 부등식도, 부등식 여러개로 케이스 분류해서 끼워 맞추지 않고, 일차함수랑 이차함수 만나는 걸로 구할 수 있음!
정말감사합니다
오늘도 배워갑니다 감사합니다
많은 상황에서 상위 호환은 맞지만 계수의 꼴에 따라선 대체가 안 되는 경우도 있습니다!
(고정점 지나는 직선으로 해석이 안 되는 경우도 있음)
저도 위에 댓글에 달아놨는데, 그 경우에는 기하적 의미를 깔끔하게 부여할 수 없습니다
본문에도 추가해야겠네요
질질 쌌다.
미분을 활용하여 직선의 회전 이동을 관찰한다, 감사히 잘 읽었습니다!
좋은 글 감사합니다
선생님 진짜 미틴넘이시네요 미친초고수다