근의 분리 상위호환
과외준비를 하다가 이번 6모 15번과 작년 9모 13에가 어떤 관점이 동일하게 쓰인다는 것을 알았는데요,
특히 9모 13번을 이렇게 푸는 것은 처음 봤다고 하네요.
앞으로 근의분리는 쓰지 마세요. 오늘 알려드리는 이 방식이 근의 분리를 거의 완전히 대체할 수 있습니다
(글 맨 마지막에 조건 달아뒀습니다.)
일단 이번 6모(2025학년도)입니다. 문제를 다 풀진 않을거고, 맨 마지막 부분만 볼게요. (나) 조건을 통해 k=2인 것까지 구한 상황입니다.
k=2니까 g(x)가 미분가능하려면 f(2)=2, f'(2)=2여야 합니다. 최고차항 계수가 1인것도 아니까, 문자 하나만 가지고 식을 세울 수 있습니다.
이렇게 말이죠.
(가) 조건에 의하면, 얘가 x가 2보다 큰 곳에서 항상 증가해야 합니다. 그럼 당연히 도함수 관찰을 해야겠죠.
아, 센스 있게 2만큼 왼쪽으로 평행이동해서 봐도 되는데(저도 풀 때 그렇게 했구요) 헷갈리는 독자도 있을 수 있기에 여기선 그대로 갈게요. 괜히 과정 추가하지 않겠습니다.
아무튼 미분해보겠습니다.
냅다 판별식 쓰면 안 된다는 것은 알고 계실겁니다.
함수가 x축과 두 번 만나지만 x가 2보다 클 때는 x축보다 위에 있을수도 있으니까요.
난 그냥 그렇게 해서 맞았는데? 하시는 분들은 운이 좋으신 겁니다. 이 문제에선 결국 그게 답이긴 하더라구요 ㅋㅋ
여기서 a 범위를 나눠서 푸는 분들도 있습니다.
그건 올바른 풀이지만, 완전히 상위호환인 다른 풀이가 있어요. 그걸 지금 알려드리겠습니다.
일단 부등식에서 모르는 문자가 있는 부분을 넘겨버립니다. 그 뒤에 기하적인 의미를 부여할겁니다.
왼쪽은 완벽하게 그릴 수 있는 이차함수고, 오른쪽은 (2,0)을 지나면서 a에 따라 기울기가 달라지는 직선이죠.
이때 “직선이 항상 이차함수보다 아래에 있어야 한다” 라고 해석해주시면 됩니다.
그럼 기울기가 점점 가파라지다가 딱 접하는 순간까지 가능하겠죠? 그때보다 기울기가 더 커지면 직선이 더 위에 있는 순간이 생깁니다.
반면 기울기가 음수라면 음의 무한대까지 계속 가능할 겁니다.
x가 2보다 큰 곳에서는 여전히 아래에 있기 때문이죠.
그럼 접하는 순간 계산해볼게요.
a는 플마 루트 6인데, 둘 중에서 우리가 원하는 순간은 -루트 6일겁니다. 그래야 빨간 직선의 기울기가 양수가 되기 때문이죠.
a의 범위는 -루트6보다 크다가 되겠네요.
2024년 9평 13번에도 이걸 적용해볼게요.
저도 이렇게 빨리 풀릴 줄 몰랐는데, 아주 빨리 풀 수 있습니다.
얘도 당연히 도함수를 관찰해야겠죠.
연두색 영역에 도함수가 그려져야 합니다. 파란색 함수처럼요.
반드시 (-1,0)을 지나야 하겠네요.
왼쪽 함수에 대입해봅니다.
b=2a-1이 나오겠네요.
도함수의 오른쪽부터 관찰해보겠습니다. 아까 했던 거 똑같이 할게요.
a범위 구했습니다.
왼쪽에서 새로 추가되는 조건은 없습니다. 이미 이 조건만으로도 왼쪽 구간 함수는
y절편이 양수고
(-1,0)을 지나므로
아까 말한 연두 구간에 그려집니다.
우리가 구해야 하는건 a+b의 최대최소 즉, 3a-1 의 최대최소값입니다. a 범위를 아니까 다 구한 셈이네요.
네 여기까지입니다.
부등식으로 인식한 뒤에 약간의 변형을 가해주어서 기하적으로 관찰하는 방법을 알려드렸습니다.
문자범위 나눠서 하는 것보다 훨씬 빠르고 실수 확률이 적은 풀이라 생각합니다.
한 마디 덧붙이자면, a로 묶인 부분이 기하적으로 깔끔하게 해석이 가능할 때 이 방식을 쓸 수 있습니다.
그럼 언제 깔끔한 해석이 불가할까요?
a의 계수가 이차도 있고.. 일차도 있고 이런 식으로 여러 개가 있다면 기하적 의미를 부여하기 힘들 겁니다.
즉 문자 계수가 하나로 한정된 상황에서는
이 방식이 근의 분리를 완전히 대체한다고 말할 수 있겠네요.
다음에 또 좋은 글로 찾아뵙겠습니다. 감사합니다.
0 XDK (+1,010)
-
1,000
-
10
-
신은 존재함 0
돈 -> 건강 마음의 평온 명예 모든 것을 가져다주는 마법의 수단
-
라이프니츠는 유명한 신학자이기도 합니다 그 라이프니츠 맞습니다
-
수시 인하대면 3
정시에 크게 기대 안하고 그냥 인하대 가는 게 맞겠죠? 원래 목표는 건국대였는데...
-
수험생활중 오르비라는 커뮤를 알게됐고 좋으나 나쁘나 입시에 관한 많은 정보를...
-
신은 안 믿어도 지식 측면에서 교리랑 경전 공부는 하고 싶음 웹소 보다 보면 좀 더...
-
해야해 코딩..
-
레어 8
카이스트 오리 이거 어떻게 팔죠
-
이웃을 겁박하라곤 안하긴 했어
-
장수생이 될수록 대학 가기 위해 입시 하는건지 입시하기 위해 대학 가려는건지 구분이 안됨
-
즐거운 명절 보내세요 올해 원하시는 목표 다 이루시길 바랄게요 명절동안 휴릅하면서...
-
“서울대 조발해줘”
-
정치 얘기 꺼내기 전엔 하하호호 웃으면서 잘 지내도 정치 얘기 나오면 생각 따라서...
-
한양대 상담지원 및 또래상담 궁금한 아기사자 클릭! 0
대학커뮤니티 노크에서 선발한 한양대 선배가 오르비에 있는 예비 한양대학생, 한양대...
-
강민철 들으면 1등급 가능한가요
-
비종교인이 기독교를 싫어하는것에는 문제가 없다고 봄 1
안 믿으면 지옥간다는데 좋아하겠냐 비종교인들은 왜 우리 까는거야? 하는거 보면 어이가 없다
-
난 불교가 좋아 3
새해에 산에 있는 큰 절에 갔는데 그때 준 떡국이 ㅈㄴ 맛있어서 불교 호감임
-
신 2
-
예수 안 믿으면 지옥 감<---이런 워딩은 좀 그럼 2
기독교인인 내가 봐도 좀 그래
-
2과목은 아니긴 한데 암튼
-
ㄱㄱ
-
겨울바다로 가자 1
메워진 가슴을 열어보자
-
공스타 맞팔구~ 0
쪽지주세요
-
인하대 패디과 세종대 인문사회계열을 썼음 근데 내가 원하는과는 패디과여서 (2지망은...
-
기독교 소신발언 5
종교메타길래ㅋㅋ 모태신앙이고 20년 교회다녔는데 신이 어딘가엔 있겠지 이런 생각은함...
-
디지몬 좋아하시는 분이 있었는데
-
인생망했는데 한번 더 기회는 줘야지
-
수학1,2 2월부터 기출생각집 4점 풀려고 하는데 기출생각집 2.3점 병행이 낫나여...
-
ㅈㄱㄴ 가끔씩 예외는 있을 수 있겠지만 거의 다 종교인이라고 생각하면 되는건가요?
-
못 사귀는데 그런거 생각할 필요가 없음뇨
-
궁금
-
그냥궁금해서요
-
죽으면 0
그냥 꿈 없이 자고 있는 느낌아닐까
-
독서 양치기 0
독서 양치기 + 강민철 커리하면 다맞는 거 가능한가요
-
괜찮은거 또 뭐있나요 작년에 브릿지만 주구장창풀었더니 브릿지스러운문제에만 너무...
-
진짜 그만 우리 수능 준비도 힘든데 그만하자 이제
-
하...........
-
성경을 근거로 신이 있다고 주장하지마 병신같은년들아
-
공부법이라든지 커리 아는대로 답해드림
-
등급은 언미생지 43224 백분위는 74 87 92 64에요 대치 컷이 수학3이내...
-
메인은 딱 한번밖에 못가본.. 추천주제가 있을까요
-
성경에 나오는 사례가 예수님이 십자가에 달렸을때 옆에 같이 있던 강도가 회개하고...
-
이게 한글뜻을 전부 숙지한 상태로 읽으니까 매끄럽게 읽히는데 낯선지문 보면 또...
-
ㅈㄱㄴ
-
진짜 개꿀잼이었다 얼른 또 해주면 좋겠다
-
사실 종교라기보단 학문에 더 가까운거같은데 불학 교양이 있다면 들어보고싶긴함
-
기독교가 아닌것.
-
탑쿼크 바텀쿼크로 바꾸면 안됨? 딱히 이유는 없는데 그 이름이 더 이뻐보임
-
무슨 경험치가 30퍼밖에 안오르네 ㅠㅠ
개추 눌렀다....
캬
일단 읽어보고 걔추
앞으로도 좋은 글 써볼게요 ㅎㅎ
ㄷㄷㄷ
갑종님이랑 생각이 거의 일치하는...
왜냐면 둘이 친구거등
저도 작년 9평 13번을 이렇게 푸는게 맞다고 생각했어서 근의 분리니 뭐니 말 많을때 잘 이해가 안되긴 했었어요
김현우 선생님이랑 완전히 똑같이 푸셨네요.. 칼럼 잘보고 갑니다!
15번 이거풀때 산술기하로 풀었는데 최솟값이라 풀린거겠죠
6평 말하시는거죠?
산술기하도 괜찮네요. 왜냐면 여러가지 조건이 딱 맞아 떨어져서 여기에 산술기하를 쓸 수 있습니다.
일단 x가 2보다 큰 부분을 봐야 하는데, 그게 x-2>0이어야 하는 산술기하 조건이랑 맞아떨어졌구요,
부등식에서 오른쪽 부분이 상수이기 때문에 최솟값만 보면 됩니다.
물론 좀 더 근본적으로는, 산술기하는 완전제곱식에서 나온 공식이기에 똑같다고 볼 수도 있지만
아무튼 아주 맘에드는 관점이네요!!
넹 6모 15번 x-2>0보다 큰상태여서 이거로 산술기하썼는데
해설강의같은거 보니까 다들 다르게풀어가지고 결국 똑같은이야기였네요
대범준 그래프 분리
첫 문제에서 a=±루트6 구하셨을 때 D/4 공식을 쓰셔는데, 미지수를 (x-2)로 해서 b'²-ac 로 바로 구하신건가요?
아! 근데 그렇게 해도 되는건가요? 제가 고1수학을 날림으로 배워서..
넵, 이해를 도울 수 있는 두 가지 관점을 소개해드리겠습니다
1. 평행이동.
x축과 만나지 않는 이차함수를 좌우로 평행이동해도 여전히 x축과 만나지 않는다. 따라서 해당 이차함수를 2만큼 왼쪽으로 이동시킨다면 3x제곱 +2ax+2이고, 여기에 판별식을 쓰면 된다.
2. 치환
x-2를 t라는 새로운 문자로 잡는다.
사실 1과 본질적으로 같다.
감사합니다!! 저는 x가 변수인 상황에서 판별식을 쓰는데, 2만큼 평행이동을 해도 똑같이 성립이 되는지 궁금했었는데 이해가 되네요! 정말 감사합니다 ㅎㅎ 덕분에 수준높은 풀이법 하나 배워갑니다 . 감사합니다!!
저도 굳이 근의 분리까지 안끌고가고 싶어서
저는 그냥 잘 모르겠으면 화끈하게 근의공식 때리고, 두 근이 모두 k보다 작아야한다면
D >=0인 경우, 그냥 더 큰 근이 k보다 작다! 라고 하게끔 가르쳤는데
기하학적인 풀이도 너무 좋은 듯 합니다 ㅎ
잘 보고 갑니다!
관찰중인 문자의 차수가 여러개가 아닌 이상 (예를 들면 식에 a도 있고 a제곱도 있는 경우), 위 기하적인 풀이가 근의 분리를 완전히 대체합니다
.
의견 공유 감사해요 ㅎㅎ
고정된 요소가 필요하다는 말씀 맞으실까요? 좋은 댓글 감사합니다 ㅎㅎ
오 이거 좋네요. 시간 단축 꿀일 듯.
+ 이번 6평 14번 부등식도, 부등식 여러개로 케이스 분류해서 끼워 맞추지 않고, 일차함수랑 이차함수 만나는 걸로 구할 수 있음!
정말감사합니다
오늘도 배워갑니다 감사합니다
많은 상황에서 상위 호환은 맞지만 계수의 꼴에 따라선 대체가 안 되는 경우도 있습니다!
(고정점 지나는 직선으로 해석이 안 되는 경우도 있음)
저도 위에 댓글에 달아놨는데, 그 경우에는 기하적 의미를 깔끔하게 부여할 수 없습니다
본문에도 추가해야겠네요
질질 쌌다.
미분을 활용하여 직선의 회전 이동을 관찰한다, 감사히 잘 읽었습니다!
좋은 글 감사합니다
선생님 진짜 미틴넘이시네요 미친초고수다