(뇌아픔 주의)역함수에 관한 고찰
출처 ) 2025 지인선 N제 7회차 22번
(가)조건을 봤을 때 어떤 식으로 해석을 해야 할까요?
아마 많은 학생들은 가 조건을 보고 아래와 같은 사고과정을 거쳤을것입니다
언뜻 보면 타당해 보입니다
하지만 역함수의 정의를 엄밀하게 생각해보면
우리는 g(x)가 '연속함수'라는것만 알지 다른 조건에 대해선 무지합니다
다시 말해 이 친구는 무한한 가능성을 가졌다는 겁니다
다항함수가 역함수를 가지려면 항상 증가/감소 해야 한다는 것은 자명합니다
그럼 증가했다가 감소했다가 증가하는 함수는 왜 안되는데요?
하나의 정의역에 대해 두개이상의 치역이 생기기 때문입니다
예를들어 f(1) = 1,2,3... 이런식으로 말이죠
하지만 그 치역중에 하나를 선택할수 있다면?
f(g(x))=x 지만 g(x)는 역함수가 아닌 함수가 탄생 한다는 것 입니다
예를들어 볼까요
이함수의 y=x 대칭 함수는
이렇게 생겼습니다
여기서 치역을 골라서 간다면?
이런 함수가 있을수 있겠죠
이렇게 된다면 이함수를 g(x)라 했을때
f(g(x)) = x 를 만족한다는 것입니다
즉 이 문제에서의 증가 감소조건은 사실 없는조건입니다
그러면 (가)조건을 어떻게 해석했어야 하나?
y=x의 한점에서 치역에 대응되는 f(x)의 x좌표가 g(x)+f(2) 인것입니다
이는 또다시 거리관점으로 해석가능한데
x=f(2) 축을 그리고
위에서와 같이 치역에 대응되는 x좌표까지의 거리가 g(x)라고 볼 수 있습니다
y=0 에서 대응되는 점이 두개니까 g(0)의 후보군은 두명이지만
g(x)가 연속이라는 조건을 준점을 통해
멀리있는 쪽이 g(0)으로 확정된다는 것을 알수있죠
재밌지 않나요
이글 이륙하면 해설까지 이어서 써볼게용
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
뭐 더 추천함?이유도 적어주면 ㄱㅅ
-
요즘 리겜이 잘 안되네 12
늙었나
-
정말 공부량에 비례하게 성적이 올랐는지 생각해보면 거의 아닐텐데 이십대 초반을...
-
애니 뭐보지 6
오늘 시험 끝나고 진격거 파이널 보고 나서 뭐보지... 주로 럽코 보는데 볼만한거...
-
문제 유형 사탐중에선 제일 개 ㅈ같은데 그래도 참고하시나
-
지금이 1억3천인데 어디까지 갈지 궁금하네요 또 여긴 주식시장이랑 다르게 각종...
-
오르비는 26티콘으로 그때가 마지막 기회임을 예언한거임....
-
각자 점심 먹고 홍대쪽에서 만날건데 머해야됨 ㅠㅠ 둘다 라쿤 좋아해서 라쿤카페도 생각중 머하지 진심
-
있음? 강기원 현강 가려는데 뉴런에 없는 내용도 알려줌? 실전적으로 잘 체화할 수...
-
오늘이 11월 29일이니까 태양의 적경이 대략 16h? 저기 보이는 저 별자리...
-
어디갈수있나요
-
대학가기전에 n수밖으면서 미기확을 셋다 즐겨보라는게 아닐까 기하 찐 고민되네 미적...
-
코 수술 해라
-
ㅈㄱㄴ
-
낄낄낄
-
성형비용 근데 1
눈코 다합치면 500정도 나올텐데 시발 이거 어케 내냐 비용… 이거말고도 보증금도...
-
첨에는 그냥 내가 여기까진가보다하고 받아들이려했지만 노력한거에비해 성적이 잘 나오지...
-
성격상 예전부터 '뭔가 무지성인 거 같은 윗사람의 지시에 아무 생각 없이 따르기'를 잘 못했음...
-
수능 진입 희망하시는 분들 궁금한 것들 여쭤봐주시면 아는 범위 안에서 답변해드리고...
-
근데 병원 가고싶어도 부모 동의 필요해서 아직 못감
-
ㅈㅔ 팔자도 같이 필 수 있었을까요
-
떡볶이존나먹고싶 3
오몬오온노ㅗㅗ
-
나 장례식하면 부모님만 계실듯
-
Fact 5
이대 다니고 있는 애들 보통 생각이 자기들 학교가 중앙대급 혹은 그 이상이라...
-
42223이고 생1 지1 했었습니다
-
각각 하루평균 몇시간정도 하셨나요?
-
26수분감 끝내고 바로 엔제실모돌리기vs수분감끝내고 26뉴런듣기 둘중하나...
-
간장 새우 먹고 싶다 새우 튀김 먹고 싶다 크아아아아악
-
뭘로 갈까요? 이번 수능 생지 31 인데 유전이 저랑은 너무 안맞는 거 같아서...
-
면접망침 멘탈 5
어제 면접 개망쳣는데 자꾸 그 장면이 반복재생됨 자살뛰러감 시발!!!ㅜㅜ
-
왜 조회수 높냐 0
슈냥 방송 안 켜있는데
-
현역 6(언매) 9(화작) 수능(화작) 원점수 100 1~2월에 단기과외 바짝 하고...
-
처음 느껴보는 따뜻함이다
-
넘비싼데 거의 팔십마넌돈아닌가여 저만큼의가치를함?
-
제목은 약간 어그로였고요ㅎㅎ 2~3등급 친구들은 물론 1등급 친구들까지 사탐으로...
-
꼬1기 1
숙1면
-
수행있었는데 내가 안했어 한순간에 남같이 돌변하더라 너무힘들어 지금도 울고있어...
-
제가 몸에 결함이 많아서 공익갈거같은데 1,2학년때 가려면 빡센곳 가야한다더라고요
-
잘나가봐야아반떼새삥...
-
반수하다가 10월에 런했는데 시대컨설팅 받을 수 있? 1
가채점 입력하래서 입력했는데 6789월 다니고 컨설팅 받을 수 있나요? 지사의 라인...
-
응애 나 아가 3
응애 나 (연대) 아(동) 가(족학과)
-
짭쪼오름 한거로다가~!
-
연애빼고시발
-
진짜 어지간히 망겜인가보네 그래도 진짜 재밌었다
-
추억이네요
읽진 않았지만 개추는 드렷습니다~
고맙다 태식아..
낮시간대에 재업하시는 게 좋을듯?
난 저문제 해설이 필요해
저 문제 되게 뜬금없이 어려워서 당황했는데 재밌고..
g(x)가 연속이란게 왜 멀리 있는점으로의 확정 조건인지 좀만 자세히 설명 부탁드림다 ㅜㅜ
0일때는 후보군이 두명이지만
0보다 조금 큰 경우를 생각해보시면 됩니다