함수추론 자작문제
계산은 많지 않지만 생각을 많이 해봐야 하는 문제 같습니다 개형만 찾으면 답은 바로 쓸 수 있으니 편하게 풀어보시면 좋을 것 같습니다 의도한 난이도는 22번 정도
(+)오류 있습니다..ㅠ 아래 조건을 추가해서 풀어주세요 죄송합니다
(나) (단, 두 실수 t1, t2는 -2도 아니고 2도 아니다.)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
31111 0
언매 미적 사문 세지 어디까지 가능?
-
여자랑 말을 좀 해봐야 알지 에휴 내 인생 끄악
-
하기 힘들까요??+알바
-
될거라고믿음
-
팔로우해도되나 너무 속보이는데
-
전 자러 갈게요 1
오늘 만난 옯둥이들 반가웠어! 앞으로 잘 지내자! 다들 잘 자요
-
다앙연히 "약대 아님 안가" 같은 목표는 아니고 그냥 고공 노리고 공부하다가 성적...
-
소녀시대, 티아라, 원더걸스, f(x) 등 누군가가 이걸 계속 틀더라
-
ㄴ...
-
출근이고 목 감기고 나발이고 다 때려쳤다
-
고려 한양 추합 0
고려대랑 한양대 공대쪽 (화/신) 충원율을 보면 작년에 유독 적게 돈것같은데 이유가...
-
그래서 저랑 동점인 진학사 표본들 간의 순위확인했음
-
표점 ㄱㅊ음?
-
일본 갔다가 여기저기 많이 갔는데 아직도 일본은 잊을 수 없음•• 혼자 여행가기 최적의 장소
-
전 일단 안할거임 보기만 할게요
-
좆목 좀 하지마셈 21
그걸 목까지 넣으면 목 막혀서 위험함... 입까지만 넣으셈
-
인증 에이블리에서 요즘 옷 와장창 사서 그냥 입어보고 있어요 사놓고 막상 어디...
-
연애가하고싶구나 4
고옥고옥
-
올해도좀...
-
적당히 마시셈 이런 거 말고
-
내일 러셀가야하는데 ㅈ댓다
-
ㅇㅈ 3
.
-
얼버기 13
-
1. 영어 공부하겠다. 2. 여행 가겠다. 3. 컴퓨터 바꾸겠다. 4. 운동 해야겠다.
-
존예 여르비만 ㅇㅈ해주세요
-
다른 ㅇㅈ 재탕 8
시즌 끝나고 새로운 사진으로 돌아올게
-
이왕이면 동물귀 달린 미소녀로…
-
오르비의 현실임 4
기만자와 ‘진짜’ 들
-
몇 개 합격 될까 투표 ㄱㄱ 가군 건국대 기계로봇자동차학부 나군 경희대 기계공학과...
-
독재+단과랑 다른게 있나요???오히려 필요한고만 들울슈있으까 좋운거같운데..!!...
-
기출은 웬만한거 다 풀었는데… 그냥 실모같은 거 모아둔 책 없나요 비문학 연습 하고...
-
안녕하세요 8
오댕이 임티 쓰고싶은데 폰이 고장나서 그 부분만 터치가 안먹어요...
-
그니까 점공 들어와주라...
-
제 뒤로 와주세요.... 하나씩 밀릴때마다 수명 주는느낌이네
-
아반떼 cn7 AD 중고 보는사람은 소나타 DN8하고 k3, k5 같이봐라 아반떼가...
-
보통 2학년 되기 전에 가나요 아니면 2-1은 다니고 가는 경우도 많은가요
-
ㅇㅈ 3
. 온점임
-
내신?....아님 3합 6이 되긴 하는데 국1 수4 생명1이라......좀...
-
근데 커뮤 특유의 말투 있는 곳이나 진입장벽 높은 곳은 못 끼겠음 ㅠ…씹덕얘기할...
-
느좋 민지 4
-
과잠 1
과잠 걍 편해서 입는건데 ㅋㅋ 남들 너네 어디다니는지 1도 관심없음 걍 대충입는옷임
-
예?
-
ㅇㅈ 6
재탕입니둥 맞팔좀 해주세요
-
ㅇㅈ 19
얼마전 생
-
이러다가 피 토하고 죽는 상상하게댐...
-
버려진 피죤투를 나도 버린다 끼요옷 귀여워 근데 얘 뭐라고 불러요? 진짜 모름..
-
ㅇㅈ 7
안경ㅇㅈ ㅋㅋ
-
생1은 1
논리와 귀류를 바탕으로 한 퍼즐풀기인가요?
-
지원하려는 학교 안정권 성적표 10~15개정도 사서 진학사에 싹다 알박기해놓으면...
-
참치 김밥 한 줄, 장국 한 사발이 먹고 싶고녀...
개어렵네 ㄷㄷ
안어려워용..
옹 이건 풀어봐야지 잠만녀
제발 풀이좀 알려주세요ㅜㅜ
오류가 있어서 죄송합니다..ㅠ 확인하시고 다시 풀어보실래요?
크악..ㅜㅜ
현역이신가요?
올해 수능 쳤습니다!
오,,,그렇군요
수학 양식 같은 거 완벽하게 숙지하신 게 신기하네요
문항 제작 많이 연습해 두세요! 조만간 제안 하나를 드릴 수도 있을 것 같아요
오우 말씀만으로도 감사합니다 :) 언제든 맡겨주십쇼!
아 문제 잘못봤네요 죄송합니다!
이거 정답개형이 뭐죠...?
234 맞나요?
아니네요 흠
오류 수정한 것에 따르면 맞습니다! 제가 의도한 답은 이거에요..ㅠ
아 -2가 비어서 다시 푸는데 그걸 빼야 했군요
아닙니다.. 시간 낭비하게 해서 너무 죄송합니다ㅠ 부족한 문제 풀어주셔서 감사합니다!
1. g(x) 좌우극한 다르려면 그지점에서 f(x)와 x의 대소 바뀌어야함 and f(x)와 x의 대소가 바뀌면 x가 0이 아닐때 g(x) 좌우극한 다름 -> 'x가 0이 아닐때 g(x) 극한 not 존재'와 '0이 아닌 x에서 f(x)의 대소변화'는 서로 필요충분조건, 따라서 x=0을 제외한 f(x)에서 x=4에서만 대소변화
2. f(x)-x는 사차함수이므로 부호변화가 짝수개 있어야함 -> x=0에서도 f(x)와 x 대소변화 (x=0과 x=4에서만 f(x)와 x의 대소변화)
3. f(x)의 최고차항 계수가 양수일 때: 0 f(2)<0
4. h(inf)=2이므로 h(x)<3
5. f(2)<0이고 f(4)=4이므로 20 인 x 존재 and 같은 논리로 f(0)=0이므로 0 0(+) 지점 존재 = f(x) 극소 존재
6. 이 극솟값이 양수면 같은 논리로 다른 극솟값 또 존재 -> 극소의 개수는 유한하므로 음의 극솟값 존재
7. g(x)=-f(x) (0 이 양의 극댓값을 c라고 하면, g(-inf)=inf고 g(0)=0이므로 g(x)=c인 x<0 존재, 따라서 lim x->c- h(x) >=3 -> 모순 -> 따라서 f(x)의 최고차항 계수는 음수
8. f(x)의 최고차항 계수가 음수: 0x>0이고 반대로 x<0, x>4에서 g(x)=-f(x)
9. g(0)=0이고 g(4)=4이므로 04에서 f(x)=0인 x 존재 -> 이 x를 a라고 하면 g(a)=0이고 g(inf)=inf이므로 x>a에서 g(x)=c인 x 존재
11. 따라서 g(x)=c의 실근은 최소 3개이므로 h(c)>=3 -> 모순
12. f(x)의 최고차항 계수를 양수라고 가정해도 모순, 음수라고 가정해도 모순
아 기껏 타이핑했는데 텍스트 깨졌네...
맞나요!!
맞습니다! 저 문제 자체는 모순입니다.. 오류 수정했는데 다시 한번 풀어봐주실래요 죄송합니다..
제발정답좀요 ㅠㅠ 못자겠어요
오류 확인하셨나요?
넵..
그래프 개형입니다!
아 저렇게 g(2)만 톡 튀어나와 있으면 되는구나..ㅠㅠ 위로 볼록이 생기면 안되는데 g(2)>0이려면 f(2)<0이고 그럼 위로 볼록이 무조건 생기는데??? 로 계속 헤맸어요 수능 공부할때도 이런거에 취약했던... 그래서 뭔가 y=x에 한번 접하지않을까 생각했는데 저걸 안해봤네요
저런 디테일 찾는 게 쉽지는 않죠 ㅠ 풀어주셔서 감사합니다!
ㅋㅋㅋㅋㅋㅋ제가 죄송합니다ㅜㅜ
중근갖는걸 생각못해서 한참 해맸네요
닫힌부등호인지 열린부등호인지 잘봐야하는데 감다떨어졋네
조건 자체에 모순이 있기도 했으니.. 더 힘드셨을 것 같습니다 모순 찾으신거 다 적어주시고 정말 감사합니다!
f(x) = 1/16 x(x-2)²(x-4)+x
f(-6) = 234