킬러 문제였구나 ㅁㅊ
준킬러도 아니고 이게 왜 3점이랑 쉬4 모아놓은 거에 나오냐
인터넷 치니까 킬러라는데 맞음??
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
어차피 놀러도 안나가는데 ㅠㅠ 전 자러가뇨
-
내신에서 누항사, 상춘곡, 일동장유가, 시조 4편정도, 일동장유가 등등 다뤘었는데...
-
심심해.. 7
롤ㄷ도 하기 싫다..
-
내신반영 개빡세던데 리세마라가 됨?
-
ㅈㄱㄴ 일단 약대는 붙여놓고싶어요
-
행정에서 반수해서 정외 다니고 있습니다. 둘 다 과생활해서 어느 정도 알아요....
-
님들이면 어디가시나요 차세대 통신에 대한 정보가 너무 적어가지고..
-
코트나 패딩 중에 하나만 입어도 되지 않냐고... 어쩐지 무겁더라
-
보면 볼수록 우민화 정책이라는 생각밖에 안드는 듯요
-
수면매매 시작 4
아침에 난 부자가 되어있겠지..?
-
중앙대 문사철 13
중대 문사철 식으로 761.xx뜨는데 가능할까요.. 정법 99 사문 98이였는데 걍 하 ㅅ발
-
지방 메디컬은 2
원서 접수일 다가올수록 등수 많이 밀리나요..? 아님 지금쯤이면 표본 거의 다 찬 건가요? ㅠ
-
28수능 6
그러면 현 수능 미적/기하/물화생지 이거 싹다 수능판에서 사라지는건가요 ?
-
여전히 chat gpt인가요?
-
삼반수 고민 7
언미화생 24 수능 34222 25 6평 11232 25 수능 23232 작년보단...
-
힘들었던 듯요 사설은 그냥 꼬아놓기만 한 거라서
-
철학이든 어문이든 유교든 상관없는데 합격할 수 있을까요 변표 나오고 2점 떨어져서 우울하네요
-
제곧내 사범대 다니시는 분들 2학년 올라갈 때 과 인원 변동 거의 없었어요?
-
아 졸려 1
자면 안 되는ㄴ데
-
현역 지잡대 - 재수 한서삼이긴 했는데 급 고민 중 노베 기적을 꿈꿨으나... 쉽지않더라고요ㅜ
-
고2인데 올해 수능 물1 38(개념 기출& n제 1~2개만 돌림, 실모x) 일단...
-
2028 수능판 되면 탐구 강사 대거 은퇴 확정임? 9
지금은 물화생지 각 과목별로 나름의 1타? 가 자리잡고 있는데, 통합되면 어쨌든...
-
역시 인구백만 통합창원시인가?
-
오카모토 마요 - TOMORROW 가사가 좋아서 늘 플리에 잇어요 정여진 성우 느낌...
-
던져야지
-
ㅇㄷ가는게나음
-
ㅇㅇ
-
국어 현강 0
ㄱㅇㅇvsr강민철 오늘 강민철 현강 대기 충원됏다고 연락왔네요.. ㄱㅇㅇ은 토요일...
-
공부를 안하면 성적이 안 나온다, 나쁘게 살면 사람들이 안 좋아한다, 이런 분명한...
-
걍 인생 여기서 마감하고싶다
-
아가 취침 6
모두잘자
-
아이폰 한국에서 아직까진 불편함
-
그거때문에 주변 찍맞이 ㅈㄴ 많음 난 계산 존나 해서 22번 실수도 못잡았는데
-
진짜 승리자는 4
의치한이고 지랄이고 지방대여도 결과에 만족해서 행복하게 대학생활할 사람들이라는거임...
-
여름에 내가 나온다 했는데 올수에 비슷했다.
-
24통통 100점받고 미적런한 애들이 제일 억울할듯 4
만약 24통통100점인데 25미적3틀했다면….? “백분위 96 2등급.”
-
수능보러 들어가기 전에 원서 쓰면서 이미 대학라인 하나는 바뀌는 느낌 올해는...
-
수업하다가 내가 혼란왔는게, 이문제에 대해 정리해주실분.. 아래 두함수에서 정점이...
-
파데 후 시발점 0
시발점으로 대수(수1) 하고있는데 양이 엄청 많아요(67강 50분씩) 파운데이션이...
-
나온다. 연습해둬라.
-
창원의 왕이 될테다 13
어느 대학을 가건 그냥 여기 다시 와서 살래 여기 너무 좋다
-
ㅈㄱㄴ
-
귀여운 오르비언은 대체로 남자임
-
올해 나온다. 또 올려줄게
-
잘자요 12
오랜만에일찍자네요 다들잘자요 즐거운크리스마스이브
-
어차피 난 붙었는데 알빠노? 하고 안뺄거같음….
-
수학 선택과목 0
25수능 기준 미적 4점짜리를 못건드려서 기하나 확통으로 넘어갈려 하는데 뭐가...
-
남은 일정은 모자이크
-
있음? 이건 어쩔 수 없는 거임? ㅈㄱㄴ...
-
물으면 바로지금
어려운거 맞아요
대체 이게 왜 여기서 나오는 걸까요...
지금은 넘어가도 괜찮을까요?
이거 상쇄 그건가
이거 어려운데
내다버린 1시간...
짱중요한?
오 아시네요
주변 애들 중에 아는 애들 없던데
이해하려 노력하고자 한다면 글로나마 최대한 상세하게 해설할 의향은 있음
최대한 이해하려 해보겠습니다...!
전 글이 이거 관련된 거였는데, 거기서는 답을 못 얻어서요 ㅠㅠ
다만, 수준이 이걸 이해할 수 있을지는 모르겠습니다
미적 아예 안 나갔고 수2 쎈 끝낸 후 처음하는 기출이라서요
현우진도 해설오류낸 문제
ㄱㄴㄷ 문제라 그런것도 있지만 객관식 정답률 10퍼대 문제임 객관식중에는 손에꼽는수준
231114 어려운거마즘
g(x)는 x의 범위에 따라 식이 변하고, 그렇기에 h(x)도 x의 범위에 따라 식이 변함. x=-3, -1, 1 부근에서 식이 변하니 ~-3, -3~-1, -1~1, 1~ 이렇게 4개 구간으로 쪼개서 생각하면 될 텐데, 문제는 경계를 어디에 포함시켜야 하는지가 판단이 어려움. 경계를 어디에 포함시킬지를 고민하고, ㄴ, ㄷ을 고민하는 과정에서 x에 극한을 적용해야 하는데, x도 극한이고 t도 극한이라 극한이 더블임. 어떻게 해야 할까?
(t->0+)lim g(x+t)에서, t에 극한이 적용될 때 x는 상수와 다를 바 없음. 그렇기에 x+t=m과 같이 치환해 (t->0+)lim g(x+t)=(m->x+)lim g(m)로 볼 수 있음. 같은 논리로 h(x)=(m->x+)lim g(m) × lim g(m+2)로 볼 수 있음.
이제 h(x)의 범위를 엄밀하게 나누어보자. g(x)가 x≠-1, 1에서 연속이기에, x≠-1, 1에서 (m->x)lim g(m)=g(x)임. 따라서 -3, -1, 1일 때 h(x)=g(x)×g(x+2)임. x=-3, -1, 1일 때는 그냥 대입해서 판정하면 되니까, h(x)를 정확하게 작성할 수 있고, 이걸 기반으로 ㄱㄴㄷ를 풀면 됨
축제 준비 때문에 어제 핸드폰 수거 전까지 시간이 없다 이제야 시간이 났습니다...!
따라서 -3, -1, 1일 때 h(x)=g(x)×g(x+2)임.
여기 파트가 이해가 안 되네요
-1과 1에서는 g(x)가 불연속일 수 있는데 왜 이렇게 되나요??
엄 제가 잘못 씀
x≠-3, -1, 1일 때인데 아예 반대로 써버림
저 문제가 23수능에서 제일 어려운 문제였다고 개인적으로 생각합니다.