수학질문 ㅔㅜㅠ
왜 f''(x)가 0보다 크거나 같은건가요 그냥 큰거라고 하면 왜안되나요ㅠㅠ? 어떨때 등호가 들어가는건지모르겠어료
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
파워레인저, 가면라이더 시리즈의 차이 본인은 엔진포스
-
키 7등급 외모 7등급 13
Iq 5등급 ㅅㅂ 공부하는게 답인게 존나 슬프네
-
1년 학비는 되겠지...?
-
3등급은 상위권이다 11
키나 외모로 생각해보면 3등급도 힘들다...
-
진지하ㄱ게 13
수1이 수2 미적보다 재밋는거 같기도
-
나 이런거 진자 몬참는단 말야...
-
1~2등급: 상위권 3등급: 중위권 4~5등급: 하위권 9등급제에서 5등급이 딱...
-
조유리vs장원영 12
원영누나는 너무 부담스러워서 난 조유리가 더 좋음ㅎㅎ
-
과4=사9 11
과4는 사9보다 공부를 더 많이 했을진 몰라도 사9보다 자기객관화 능력이 현저하게 부족하므로….
-
순서대로 cm,백분위,iq임 어캄뇨
-
중앙대 삼반수 11
제목 그대로 중앙대에서 삼반수하는게 어떤지 여쭤보는 글이고요..평소 성적은...
-
근데 아이온큐는 많이 지장잇음... 제발 올라다오..
-
수1에서 원리합계나 수학적귀납법, 등비수열의 활용 파트는 수능에 안나온다고...
-
옯만추 10
ㅎㅎ
-
현역 공부량 9
사문 한지는 고정으로 박아두고 언매 미적해도 시간 안부족할려나 고2모고 평균 3정도 떴습니다
-
한 눈에 사륜안 8
한 눈에 백안
-
연세대가선언함 ㅇ
y=x^3도 실수 전체 집합에서 증가한다는 거랑 비슷한 맥락이라고 보시면 돼요
그것도 생각해봤는데 잘 모르겠어요ㅠㅠ 2x^2은 이해가 가는데 저런 식은 어떻게 알수있는건가툐?
증가함수도 f'>=0인거랑 같습니당
근데 그러면 그냥 위로볼록 아래로볼록 할때는 왜 =이 안붙는건가요?
아래로 볼록하다면 f">=0이다.
f">0이면 아래로 볼록하다.
제 생각엔 명제 공부를 하셔야될듯
이계도함수가 y=x^2인걸로 놓고 그려보세요
근데 그냥 위로볼록한거 할때는 f"(x)<0 이렇게 했는데 저 문제는 실수 전체여서 =도 붙는건가요?
f(x)=x^4을 생각해보면, x=0에서 이계도함수값이 0이지만, 전체 그래프는 아래로 볼록합니다.
0이 추가된 이유를 한마디로 표현하자면, 특정지점에서 이계도함수값이 0이어도, 주변에서 0보다 크다면 아래로 볼록하다는 성질이 유지되기 때문입니다.
이계도함수의 값이 쭉 0이 되는 구간이 발생하지 않는다면(이때는 직선이겠죠?),
어차피 0이상이라고 했을 때 0이 되는 지점들은 이산적으로 분포될거고, 그 이외의 지점에서는 항상 양수일거라 저렇게 표현하는 것이 옳은 것이죠
그러면 그냥 위로볼록 아래로 볼록 구할때는 이계도함수 값이 >0,<0 이렇게만 붙고 =이 왜 안붙는건가요? 이제 =이 붙는건 이해가 가는데 그냥 위로볼록 아래로볼록 할때는 =이 붙으면 안되는질.ㄹ 모르겜ㅅ더요
이계도함수가 모든 정의약에 대해 쭉 0이면 직선이 되는 반례가 생겨서 그런거같아요..!
=이 안붙는다고 하신 것이 정확히 어느 부분에서 나온 것인지 모르겠으나, 제 생각엔 아마
'f"(x)>0이면 그래프가 아래로 볼록이다'
라는 명제를 보고 그리 얘기하신 듯 합니다.
'p이면 q이다' 참이라고 해도, 'q이면 p이다'는 거짓일 수 있듯이, 위의 명제는 참이어도
'그래프가 아래로 볼록하면 이계도함수가 양수이다'
는 거짓입니다. 정확히는 0이상이어야하는거죠.
아마 학생께서
'f"(x)>0이면 그래프가 아래로 볼록이다'
라는 참인 명제를 학습하시고,
f"(x)>0과 그래프가 아래로 볼록한 것은 동치라고 오해하신 듯 합니다.
이거맞나요?
넵 맞습니다
지금 위의 저 사진처럼 되는거까지는 이해가 가는데
문제 중에 873이랑 874 질문 차이를 잘 모르겠어요 둘다 위로볼록 아래로 볼록 물어보는거같은데 873번은 볼록한 구간이 이미 정해진 상태고 874는 전체 실수여서 그런겅가요? 어디에서 차이를 보고 무슨 조건을 써서 풀어야할지 감이안잡혀요ㅠㅜㅡㅠ
간단하게
아래로볼록이면 f''>0 -> X
아래로볼록이면 f''>=0. -> O
f''>0이면 아래로볼록 -> O
f''>=0이면 아래로볼록 -> X
다른 이야기긴 하지만
f''>=10이면 아래로 볼록이다.
이것도 맞는 명제입니다
헷갈리시나요?
네 모르게ㅛ어요ㅠㅠ