(짧은 칼럼) 1/x을 적분하면 무조건 lnlxl+C라 할 수 없는 이유
lnlx+3l의 부정적분도 비슷한 예시가 될 수 있겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
반드시 그 중 하나가 되겠다
-
없겠죠?
-
가군에 경희대 국제캠 어문계열 학과 4칸 뜨는거 스나하는게 나을까요? 아니면 다군에...
-
왜 나는 바로 원서를 안넣고 계속 진학사를 보고 있는거지
-
사설 푸는데 킬러를 풀지를 못하겠네요 사설 풀면 거의 항상 90점대였는데 이제...
-
남자라면 어떤가요
-
연대 간호런한다는 글이 많이 보이는데 아무리 대학 뽕이 간절해도 남자면낮공...
-
나 말했음 진짜 경고햇다
-
꿀물 제조 5
-
홍뱃 신청 넣음 1
전화추합했던 물론 안 갔지만
-
심심한데 무물 11
질문 받아요 질문해주세요
-
아 작년엔 공부 안해서 할말 없는데 올해는 존나 하고 갔다는거임.. 고사장 의자가...
-
처음 성인이 되어 그동안 참아왔던 음주도 해보며 이틀을 지내고 있어요 비록 전...
-
6은 어제까지 쭉 7이었던 다군 (홍대인자전) 3 중대스나 4 이대인통 (붙을확률...
-
아숭곽인 ㄱㄴ?
-
42명뽑는데 갑자기 6칸이돼버림 ... 딴거 과감히 지르려했는데 너무불안해짐
-
민족의 아리아를 부르게 해다오
-
2024 많이는 아니지만 열심히 살았음.. 성적도 완벽은 아니지만 목표에 멀지 않게...
-
제발 제발 부탁이야 내가 무릎꿇고 빌게 제발 내가 다 잘못했어 나 진짜 팀원들 얼굴 볼 면목이 없어
-
메탕 잡으려고 1시간 째 스프레이 노가다 중인데 10%가 원래 이렇게 안 나오는...
-
그것은 독해속도가 빠르면 됨 이해 안되도 여러번 다시 읽어보면 되니까 개꿀임뇨
-
금태솥밥 0
머리랑 뼈로 육수 다 내리고 금태는 포떠서 소금간해둠 기대가됩니다!
-
진지하게 함 파볼까
-
동국대vs 외대 3
동대는 회계나 경영정보 생각중이고 외대는 소수어과 생각중인데 님들이라면 어디갈거같나요
-
수능에선 연초뜨던게 6모는 다 노래짐.. 지금까지 6모를 더 잘본줄 알았는데
-
정보가 너무 없어서 미치겠습니다
-
그래도 서울에서 하는 아싸생활<<생각보다 괜찮을지도...
-
지금도 신기함 호그와트 삘나게 생겨서
-
뭔 개같은 꿈을 꾼거같은데
-
반수했는데 갈말 1
전남대 화공or기계 다니다가 무휴학 반수로 경북대 전자, 부산대 높공 등등 노릴...
-
역설적으로 교통이 제일 편함
-
진학사 3칸 1
같은 계열 서성한 라인은 다 1-2칸인데 연대 어문쪽은 3칸이 뜨는 이유가...
-
배경지식 거의 없는데… 올해 사문 1 뜨긴 했는데 그건 걍 사탐런으로 2달 깔짝...
-
님들 7
머함
-
6모 때 국어 표점이 140이어서 오류 뜸ㅋㅋㅋㅋ
-
저 또한 9평까지만 하더라도 4등급이였습니다..처참했죠 하지만 올바른 학습법만...
-
올해 현역입니다. 숙대 자전은 나군이고 현재 7칸 안정입니다. 숭실대 화공은...
-
나무위키에도 나와있는 진리의 말임
-
그 3점짜리 버린 덕에 원점수 77점이 85점 됐으니까
-
외대 소수어과 1
9명 뽑고 실지원자 등수는 계속 4-6등 왔다갔다 하는 상황인데 떨어질 확률이...
-
교육학과 질문 2
교육학과 지원하려 하는데 사실 교직에 나갈 생각은 1도 없고 로스쿨에 진학할...
-
자소서를 어떤 pdf 파일로 써 놓고 제 교육 방식을 적어놓은 피뎊을 5만원에...
-
김과외 특별추천 선생님이 알려주는 새내기 과외 꿀팁 5
김과외 선생님 게시판에 올려 뜨거운 관심을 받은(?) 글인데 여기에도 도움 받을 수...
-
수학 3점 하나 더 맞았으면 백분위 3 표점 2 오르는데 10
이거 큰거임?
-
재수 고민됨.. 3
수능을 너무 망쳐서 재수하려고 했는데 막상 하려니 목표도 꿈도 없으면서 하는게 맞나...
-
최초합 인원이 0
모집인원 반도 안되는 건 내일 반이나 더 들어온다는 건가요??흠
-
유기화학? 뭐 그런거 배우나
-
재수학원에서 상담했었는데 원하는 대학교 최초합 점수가 831.41 추가합격점수가 A...
-
새벽에만 실지원 넣엇다가 아침되면 다시 빼는 표본들은 뭐하는넘들임..??
-
6모 건동홍이랑 9모 중앙대 라인이였네 6모 중앙대 9모 서성한인줄 알았는데 빨간약이였고
C1이랑 C2랑 안 같아도 되는 건가요??
네네 다를 수 있습니다.
한 함수 적분할 때 구간마다 적분상수가 다를수도 있는 거니까 그런 거조?
근데 개념이나 해설강의들보면 항상 ln절댓값+C1 하던데 오개념인가요?
"한 함수를 적분할 때 구간마다 적분상수가 다를 수도 있다"라고 생각하시면
좀 위험할 수 있습니다.
기본적으로 피적분 함수가 '연속'일 경우
적분이 된 함수는 자동적으로 미분가능하게 되어
적분 상수가 동일해집니다. (cf. 도함수 연속->원함수 미분 가능성 보장)
이 점을 염두해주시고
'피적분 함수의 정의역이 불연속으로 끊겨 있는 상태에서 (ex. 1/x)
적분할 때 구간에 따라 적분상수가 다를수도 있다.'
이렇게 생각하시는게 좋을 것 같습니다.
말씀해주신 개념/해설강의 같은 경우에는
앞뒤 맥락과 설명하는 상황을 추가적으로 파악해야하기에
확답을 완전하게 드리기는 어려울 것 같습니다.
현우진 선생님 킬링캠프 모의고사 28번에 나온 소재네요ㅎㅎ
저도 고려안하고 틀렸던…
아 그런가요? 킬링캠프에 이 소재가 이미 나왔는 줄은 몰랐네요ㅋㅋㅋ
이거 소재로 한 문제 사설에서 봤어요
그렇군요! 알려주셔서 감사합니다! ㅎㅎ
고등학교 수학에서 불연속함수 적분 안시키지 않나요??
가우스 함수같은 불연속함수 자체를 적분한다는 의미가 아니라,(당연히 고등학교 교육과정에서 불연속함수의 적분은 다루지 않습니다.) 연속함수를 적분할 때 정의역이 끊겨있어 구간별로 적분해야되는 상황(적분 상수가 달라질 수 있음)을 말씀드린 거에요!
예를 들어 점근선이 존재해서 한 지점을 기준으로 정의역이 끊겨있는 상황이라고 합시다. 다만, 그 지점을 제외하고 나머지 부분은 다 연속이고요(1/x의 경우 x=0을 경계로 정의역이 끊겨있음)
이 경우 함수의 구간을 나누어 적분하면(x>0,x<0) 구간별로 적분 상수가 달라질 수 있다라는 의미입니다!
아하! 친절한 설명 감사드립니당><
넵! ㅎㅎ