회원에 의해 삭제된 글입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
올해 연경 추합 0
몇번까지 돌까요?
-
오르비하고있음
-
전화 다 돌렸다 3
착하게살겠습니다
-
므찌네 2
-
건강한 간 0
고맙다
-
오늘 한 거 3
1. 워마 하이퍼 2000 day 1~3 2. 한완수 수1 23페이지까지 워밍업이라 여기까지
-
그럼 몬스터 마시면 되지
-
허접~♥︎ 3
바보
-
되면 좋겠다
-
저 아님뇨 앞에 빠질 분인데 연대 경영 696.55 될까요 이 점수면 예비 몇 번인지 아시는 분?
-
메에에ㅔ엥ㅇ에에ㅔㅔㅔ롱
-
되나요? 급함 전 연대썻고요 예비3번이고요 점공 제 앞에 잇는 분이에요 ㅜㅜ 그리고...
-
쎈츄 조발좀요 6
-
초딩과외재미없다 4
가르칠게없어 하..
-
보통은 “음 한번쯤은 수사해봐야겠네” 가 상식적인 생각 아닌가 “대통령이...
-
연대 693.3 4
되는과 있었나요?
-
화작이나 문학은 어느정도 문제 푸는 양이나 개념으로 승부할 수 있다고 생각하는데...
-
인설의 목표면 수학은 무조건 미적으로 가야할까요? 11
올해 재수생인데 수학 과목 선택하는데에 고민이 있어서 물어봅니당 작수 성적은 원점수...
-
하 복귀한다 1
연대 조발 때문에... 과외생 과제 준비하면서 수업 준비 하면서...복귀해야지
-
2만원에한벌이맞지십만원넘어가면사기싫어짐블랙프라이데이때바지11만원주고샀는데한달만에8키로...
-
연대상경 한명빠져요~ 17
딴데 붙으면 글로 감당
-
점공 2
점공에 없던 애들은 보통 최상위 애들일까요? 라고 연대 쓴 친구가 물어봐서 써봅니다...
-
머리 아플 때 타이레놀이란.ㄴ 약 먹으면 나아질 수도 잇음뇨
-
나도 인서울하고싶어써...
-
좀 많이 돌듯한데 어떻게 보시나요?
-
그 후로 장기간 수험판을 못 떠나고있다는..
-
생1 유전 내신 0
저희 학교가 생1 좀 어렵게 나온다는데 내신 대비로 백호 상크스 유전만 듣는거 좋을까요?
-
연세대 0
갑자기 8시에? 퇴근 안하나 연>>>>고 ㅇㅇ
-
롤하실 분 11
ㅇㅇ
-
있겠죠? 근데 남탕이려나요?
-
술마실사람 4
혼자 마시는 중 ㅠ
-
연대 신촌캠 한번 다녀오면 고대 가려던 사람도 연대로 마음 바꿈 연대가 캠퍼스는...
-
합격인증 글일듯
-
연심리 0
대기 12번이면 그냥 가능성 없다고 봐야되죠?ㅜㅜㅜ
-
연대가 조발한거 의식하는 와중에 입학처에 전화 ㅈㄴ 걸려오고 내일 조기발표 할듯...
-
팔로워 팔로잉이 동시에 줄었네
-
메인가기 힘드니 과외빌런썰은 내일올리도록하겠음
-
QED
-
수많은 합격증을 뚫고 메인에 갈 수 있는 방법은 무엇일까
-
솔직히 서울가고싶음
-
반박시 North 고려대학교 ㄱㄱ
-
고2때 오르비 시작했는데 고1때 상담에서 담임쌤이 너정도 내신이면...
-
닉변완 20
조발감사합니다 감사합니다...
-
연대를 붙었으니 2
서울대를 편하게 기다릴수 있겠군요 ㅎㅎ
-
지거국에도 인서울처럼 라인이 잇음뇨
-
기차지나간당 2
부지런행
-
하 인제대 3
조발 안하나ㅠㅠ
g'(u)=lim 부분에서 h가 저런 식으로 쓰이면 안 됨
왜 안 되나요??
e^f(x+h)-e^f(x)로 적용이 되어야지
e^{f(x)+h}-e^f(x)가 되면 이상해짐
아 이해했어요 감사합니다
말 그대로 u에 대해 미분한 것인데요. 합성함수 미분을 증명하고 싶으시다면 x에 대해 미분한 것으로 증명해야 할 것입니다. 저렇게 식을 쓰면 u 자체를 변수로 보아 u로 미분한 것이 되는거죠.
아하 그렇군요 고수님 감사합니다 ㅠㅠ
여기에 첨언하자면,
뉴턴식에서는 미지수를 임의로 지정했을때(혹은 2개 이상이 나올때) '(프라임)이 뭐에 대한 미분인지 확실하게 보여주지 않는 문제를 확인할 수 있습니다.
그러기에 뭐에 대해서 미분한다는 의미기호가 확실히 들어간 라이프니츠를 이용하죠
윗 식은 f(x)에 대해 미분한 식이고, 선생님께서 내리시고 싶은 결론을 도출한 식은 x에 대해 미분한 것이므로 다른 것입니다.
제가 잘못 이해한걸수도 있는데 h'(x)=g'(f(x))가 어떻게 되는건가요
그냥 제가 임의로 g합성f = h라고 잡았습니다..
그러면 h'(x)를 미분하면 g'(f(x))f'(x)가 되어야지 g'(f(x))가 되는 이유가 뭔가요
오
h'(x)가 아니라 h(x)
h 미분하고 원함수에 f'(x)를 곱하면 맞게 나오네요
h로만 생각해서 형태만 본 것 같아요
감사합니다!!!
네 해결되셨다니 다행입니다
확실히 알았어요
다들 감사드립니다