[수학칼럼] 정보의 용도 파악
수학은 현장감이 의외로 큰 과목입니다
그렇기에 저는 어떠한 상황에서도 당황하지 않고 문제를 풀수 있기위한
원칙이 존재해야 한다고 생각하고 그것이
어떤 상황에 있든 정보의 용도를 가장먼저
파악하는 것입니다
일단 240613으로 적용해보도록 하죠
먼저 문제에서 주어진 정보를 정리하도록 하죠
1.BC와 CD길이
2.각BCD의 코사인 값
3.원지름의 비율
4.P1P2와 Q1Q2의 길이의 비
5.삼각형 ABD의 넓이
이제 문제를 풀기전에 먼저 계획을 해야 합니다
이는 문제에 대한 대강 틀을 잡는 걸로
각 정보들이 어떤식으로 사용될지를 예측하는 겁니다
1) 1번과 2번 정보는 변 BD에 대한 정보를 알려줍니다
2) 원에 내접하는 삼각형이라는 부분에서 3번과 4번은
각 BAD에 대한 정보를 도출해줍니다
3) 각 BAD에 대한 정보가 있다면 삼각형의 넓이(5번)를 알기에 사인 넓이 공식으로 AB와 AD에 대한 식 하나를 먼저 세울수 있을 것입니다
4) 변BD, 각BAD를 알기에 BD, AB, AD에 대한 코사인 법칙으로AB, AD에 대한 식을 추가로 세울수 있습니다
우리가 알고자 하는것은 AB,AD 식 개수는 2개
식개수=미지수 개수 이기에 1) - 4) 까지의 계산만
해주시면 되기에 나머지는 그냥 계산만 해주시면 됩니다
251127입니다
이 발문에서 정보는 총 3가지가 있습니다
1.접선이 x축인것으로 g(×)에 대한 정보 2가지
2.역함수를 지니는 점에서 정보 1가지
이 정보들의 용도는 명확합니다
오직 f(x)를 확정시키는 용도입니다
f(x)의 최고차항에 대한 정보를 주었기에
f(x)에 남은 미지수는 3가지
식개수=미지수개수
나머지는 계산만 하면 됩니다
250629입니다
구해야 하는 미지수는 3개
a,b,c
하지만 바로 보이는 정보는 없습니다
정보가 보이지않다면 찾아내야죠
g(x)가 실수전체에서 미분가능하답니다
일단 f(x)를 미분해보죠
미분하니 증가함수, 0과 1에서만 변곡점을 지닙니다
근데 g(x)는 x<b일 때 -f(x-c)가 됩니다
미분가능성을 생각해보죠
미분가능: 도함수연속, 원함수연속
원함수가 연속가능하다는 정보는 a값 특정이 목적입니다
b값과 c값은 도함수 연속조건을 통해 특정해야합니다
우리는 f(x)가 항상 증가, 변곡점은 0과1이라는
정보를 알고 있습니다
f(x)가 항상증가 한다는 정보는
f'(x)=-f'(x-c)를 만족하는 f'(x)값이 0임을 알려줍니다
이를 알아내면 b=c=1는 쉽게 나옵니다
이후 원함수 연속조건으로 a값만 계산하시면 됩니다
이렇듯 모든 문제에서 정보는
확실한 목적을 지니고 있습니다
또한 세번째 문제처럼 그것이 직접적으로 제시된것이
아닐수도 있습니다
하지만 만약 정보를 알게된다면
그정보의 목적이 무엇인지 부터 알아내야 합니다
그이후는 확신을 가지고 계산을 하면 됩니다
이상입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
아님 이차방정식까지만?
-
성반시공 인증 2
-
피곤하다피곤해 2
양떼와같은삶을살고싶구나
-
쓴 대학 세개 죄다 공개율이 30~40퍼센트정도인데 50은 넘겨야 계산기 볼법한가?
-
내신 삐끗해서 정시 올인하려고 자퇴했는데 내신때 물1,2 화1,2 만 해봄 물리랑...
-
그나저나 한명 더 들어왔는데 순위 방어함
-
중대경영 삼반수 9
중대 경영가서 삼반수 해야될거 같은데 어떰.. 현역 33112 반수 21122 (...
-
고민이 되는데 11
휴릅을 할까요 그냥 탈릅을 할까요 계정을 버리자니 왠지 아깝고 그대로 두자니 무수히...
-
맞팔 구해요옴!!! 10
구해!!
-
정시 컨설팅 받고 안될걸 알지만 혹시나 하는 마음으로 고대 사회학과 썼는데ㅋㅋㅋㅋㅋ 배아파 뒤지겠네
-
작년에 써보신 분들 뭐가 더 비슷했나요?
-
교대 부산 경북 인하 아주만 봐도
-
충전기 폰에다 꽂는 부분이 오른쪽 눈에 날라와서 맞은 이후로 잠 다 깸 ㅅㅂ
-
695.47로 노문뚫기 나무아미타불
-
일반적으로...
-
어떻게 미시가들어간 경제학이있어 누구배우라고만든겨??????!!!
-
저 비니 샀는데 2
완전 그냥 귀여워버림
-
원준이형 기다려!!!
-
다시 못보나요? ㅜㅜ 하다가 끝나버렸는데 눌러봐도 이렇게뜨네요..
-
어땠음? 얼마 받앗어오
-
같이 들으실 분 계신가요 25만원에 계정 같이쓰는거임
-
중고 일렉 샀어요 16
내일 배송해주신대요 부친의 금전적 지원에 감사드립니다 사랑해요아부지
-
02까지는 응애임 25
ㄹㅇ
-
현재 공통 박종민 선생님 수업을 듣고 있는데요 이번에 과제로 내주신 수열 숙제가...
-
644.2들고 사과계 안쓰고 인과계만 쓰고 앉았네 진짜 사과계 걍 쓸걸 그랬네 진짜 ㅈ같다
-
사탐× 투과탐러의 숙명
-
호감고닉 7
-
컵라면 추천좀 10
집에 새우탕, 육개장 있는데 뭐먹을까요
-
그렇습니다 난 이제 백수입니다
-
2월 되야 들을 수 있음?
-
싸이버거도 뿌리면서하면 진심으로 축하해드립니다~
-
닉변 추천좀뇨 5
-
네 넣어만주세요 넣어도 보려면 폰인증이라는 무시무시한 과정이 있어요
-
나에게 안 붙을 수 없다 합격한다 했는데 떨어지는 것도 ㅅㅂ 진짜 그럴 일은...
-
현역 수시로 숭실대 붙었지만 안가고 재수했어요 ㅜ 수능성적 언미생지 53445 →...
-
26 계획 1
-
예수님 믿읍시다
-
아이디어듣는데 딴단원은 그래도 어려우면서 할만한데 삼각함수 활용은 걍 ;; 안보임
-
첫 풀이 2000덕 드리겠습니다! (+ 자작 아닙니당)
-
두개가 스나라 쫄려서 하나만 보고싶은데 나중가서 궁금해지면 또 넣고 이렇겐 안됨??
-
물론 난 3차까지 튕겼다 게이야 ㅋㅋㅋㅋㅋ
-
처음본사람 있길래 봤더니 진학사에서 본 사람이랑 1 2지망 동일 수능점수 동일...
-
뽀뽀받을 오르비언 구함 17
왜클릭?
-
고고고!!
-
ㅇㅈ) 주식 익절 인증 39
거래 4일간 판매수익인데요 사실 숏 아니면 지금 잃을 수가 없긴 해요 (제...
-
학교에서 애들이랑 가끔 돌렸는데 이상한 누나들 가끔 걸렸음
-
여기 넣는거 어떰? 병행하다가 이번 수능도 안되면 걍 카페차릴까하는데
-
삼성페이가 넘 아까운데..
-
여자들 한테 연락 ㅈㄴ온다 하...
닉네임부터 바꾸셈
선ㄱㅐ추ㅋㅋ
당신뭐야
흠 만족스렂군
너누구야
계정 해킹당함?
님?
맞말
경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이!
ㅏ랑햐요
그건 좀...
존나멋있다ㄹㅇ
그냥 고능부엉이가 맞다
대고능부엉
고능아네 ㄱㅁ
와 고트부엉이
고능부엉이 ㄹㅈㄷㄱㅁㅊㄷ
간단하지만 정말 알찬 칼럼이네요. 따봉
와 뭐고 이게
일단 스크랩