동생이 복소평면이란 걸 주워듣고 와서
물어보는데 이게 뭔가요...?
수학 상 내용같은데 정시충이라 모름,,
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
점공계산기 2
엑셀로 보는데요 max랑 min이 뭘 의미하는지를 잘 모르겠어요
-
결과는 그에 상응하지 않아서 좀 서럽 ..
-
미적분 밖에 하지않은 예비 통계학과 학생인데 확률과 통계 공부를꼭 해가야할까요...
-
1. 화공은 기계, 반도체 다음으로 물리를 많이 하는과임 -> 대부분 모르고 지원함...
-
점공률 42퍼 0
더 안들어오려나
-
ㅆㅅㅌㅊ임..? 1종 보통딸거임뇨
-
입갤 9
-
[속보]尹측 "'도피설' 거짓 선동에 자괴감..기소하면 응할 것" 4
윤석열 대통령 측이 수사기관의 체포영장 집행 시도에 대해 "기소하거나 사전구속영장을...
-
(pi)^2-e만큼 아파요
-
돈은 상관 없으면 걍 기본 가는게 맞나요?? 그리고 남자 42, 46미리 중에 뭐가...
-
깡표점이 미친놈이라 올해만표 72 작년만표 73 재작년만표 73 경제 웨않함?...
-
2025 서바 1-8회 수준으로 내면 됩니다ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ 너무 갓나?
-
화1단♥️
-
문학 교육청 기출만 모아놓은 문제집 있음?
-
하 성심당에서 4
주먹밥 한 판 털어왔다 후..7만원..한동안 안간다 성심당..줄 서서 처음...
-
밍 2
밍..
-
유행은 살짝 지난거같은데 요즘은 뭐가 인기지 꿔바로우까지 이빠이 먹고싶네
-
다른외국인은 번역기 쳐서 보여주든가 영어로 말해서 어케어케 소통이 더ㅣ기라도 하지...
-
ㄹㅇ..
-
사문 어때요 4
저도 1등급 맞을 수 있나요
-
내꺼임뇨 나 애기 때부터 좋아했는데 성심당 sns타서 거의 못 먹음뇨 하..다 내꺼야
-
누군가가 생각나는 릴스 15
-
아사히 마실 걸 6
기린 이치방 나랑 진짜 안 맞네
-
2학년이랑 3학년또 다르고 학부랑 현장이링 또 다르다는데 할만하길래 졸업하고...
-
진학사 탈퇴함 2
정신의 평화와 안정을 위해..
-
하 프메 왔다 6
2025 살까 2026 살까 고민 했었는데 그냥 26사길 잘한듯
-
ㅈㅂㅈㅂㅈㅂㅈㅂ아기 사자가 되고싶어요
-
아 비트코인 0
무슨 일이고.... 패닉셀... 해야겠지??
-
해도 될깝쇼??
-
이거 들을만함?
-
강제로 텐션 올리기 。◕‿◕。
-
하지 마세요 그냥 무물보다 1억배 더 여러분의 인생에 도움됩니다
-
중대추합 1
중대 다군 나만 작년이랑 별로 안다를거 같나 왜나면 이미 작년부터 성대이상되면...
-
왜 성기훈 도와주는척 계속 하는거였지
-
고대 점공 2
교과우수랑 일반전형이랑 따로 되어있는거죠?
-
매일매일씻어야 1등급나옴ㅇㅇ.. 저는 만점 받으려고 하루에 2번씩 씻었어요…...
-
시대인재 재종 8기는 엔서바 일부는 선택 구매시켰다던데 4
그 1과목 모고 50개+ 를 기존 서바 파이널 브릿지 전국서바에 더해서 썩다...
-
성대 자전 7
성대 자전 몇점까지 합격할까요??
-
헤헤 4
우헤헹
-
시발점 -> 시발점 수분감 ->뉴런 갈려는데 어떰?
-
자국에서 살던애들 의대보내줘야지 뭔 개같은 해외거주자 전형 화교전형같은거...
-
경제러들 들어와바 12
이거 암기 해야함? 할필요없지..?
-
생윤사문러인데 이번에 담요단 모드로 영어랑 사탐만 할 예정인데 2
목표: 영어 1등급 사탐 1과목 1등급 으로 최저맞추기 그냥 생윤사문 계속 하는게...
-
수2 뉴런 0
작년에 이미 중간고사 부분(미분 중간쯤?)까지는 들었는데 극한부분은 이미 알고있는...
-
릴스보다가 갑툭튀나옴 15
심장 멎을뻔 했네 진자..
-
반갑습니다. 입시림입니다. 영어, 탐구와 달리 국어는 성적이 즉각적으로 오르지...
-
。◕‿◕。
-
밖에 눈온다 6
이뻐
고등학교내용 아닐걸여
직교좌표계에서 y축 대신 허수축 x축 대신 실수축 놓는거 이럼 모든 복소수를 평면에 표현가능
z=a+bi일 때 (a,b)에 표현.
이걸 응용한 유형문제가 있나요?
a+bi꼴을 평면상에 표시한거로 아는데...
다만 저걸 고등학생이 어디서 듣고 왔는지는 모르겠음...
학원에서 이걸로 문제 푸는 걸 알려줬다는데....
도대체 뭔 어둠의 스킬을 알려준거야
드 무브아르의 정리 그런건가?
일본에선 고딩때 배운다던데
갈수록 복잡해지네요.....
하 일본한테도 밀리는데 여기서 교육과정을 더 깎아먹는다니
신기하네….
겨꺄애
밑이 음수인 지수함수같은거 함 찾아보시면 관련설명 나옴 ㄱㄱ
교과외
근데 별로 안 어려워요 구글에 검색해보시고 설명해주세요 학문적 호기심이 있는 친구네요!
이걸 응용해서 푸는 문제 유형이 있을까요? 학원에서 배웠다길래
오일러 공식때문에 각의 합이 복소수끼리의 곱으로 표현되거든요. 그걸 이용할 수 있지 않을까요
어렵네요...고1한테 뭔 이런 걸....
아.. i^4 이거 할때요?
그거 필요없어요
너무 복소평면을 과소평가하는 가르침이에요 그건
복소평면 자체에 대해서 궁금한게 아니라면 굳이 알려줄 필요 없을 것 같아요
아아 그런가요 그냥 보고 넘기라 해야겠네요
복소수 거듭제곱할때 쓰는건데 필요없어요
그냥 계산으로 밀고 나가는 게 더 편한 풀이일까요?
편하기야 복소평면이 100배 편한데 고1 1학기 수준에서는 그렇게 숏컷을 써야만 내신이건 모의고사건 100점을 받을 수 있는 건 아님
그런가요..그냥 대충 넘겨야겠네요
25수특 미적에 쓰면 생각하기 편한 문제는 있는데
딱 거기까지
유튜브에 오일러 공식 설명하는 영상 (Dmt part)에도 간략히 언급 되긴 해요
고딩 선에서 문제 푸는데에 필요할까 싶긴한데
먼가 먼지 알 것 같은데 기억이 안 나네요 ㅋㅋ. 친구가 갓반고라 거기서 복소수할 때 드무아브르의 정리를 즐겨썻던 그거 같은데, 제 기억에 그렇게 대단한건 아니였던거 같아요.
딱 내신용.. 그때 말고는 대학가서 배우지 않는 이상 존재조차 까먹고 살아요
내신대비학원이라 알려줬나보네요
고딩과정에서는 딱히 막 사용할 필요가 없는.. 없어도 잘할수있습니다
z=x+yi
한번도 쓴적 없음
드 무아브르 정리가 중요하죠ㅡ주기성을 암산가능
근데 삼각함수 선행 정돈 해둔 친구여야 잘 응용할 수 있어요
삼각함수 모르는 애한테는 굳이 설명해주면 복잡하기만 할 거 같네요...ㅋㅋㅋ
댓 다는 사람들도 잘 모르는 거 같은디
복소평면 (complex plane)이라는 건
C = R x R
즉, 실수체의 곱집합이라고 본 겁니다
복소수 집합을 실수의 순서쌍(Ordered pair) (x, y)들의 집합으로 보고
a,b,c,d, k를 실수라고 할 때
k(a, b) + (c, d) = (ka + c, kb + d)
(a, b)•(c, d) = (ac - bd, ac + bd)
로 정의하면
우리가 아는 복소수 연산과 동일한 연산 구조를 가진 체를 이룹니다.
이렇게 했을 때 좌표처럼 평면에 점으로 복소수를 나타낼 수 있는데 그걸 복소평면이라고 부릅니다.
필요 없는데 가르치는 이유는
복소수의 곱연산이 회전변환(크기도 고려해야 하긴 합니다)이 되기 때문입니다.
가령 방정식 x^3 - 1 = 0의 해 w 같은 경우 평면에 나타냈을 때의 동경의 각이 특수각이기 때문에 거듭제곱을 (ex. 60도씩) 회전으로 생각해서 간단하게 연산을 할 수 있습니다.
윗분이 말씀하신 드 무아브르의 정리가 복소수의 거듭제곱을 회전으로 생각할 수 있다는 정리입니다
대학에서도 복소해석학을 배우지 않는다면 필요가 없는 내용입니다
상세한 설명 감사드려요 :)
공업수학이라고 대2때 배우는데 공대인데도 안 배우는 과도 많음
수학(상) 복소수 단원에서 1+루트3i/2 꼴의 거듭제곱에서 유용하게 쓰임
거듭제곱을 원 회전수로 표현할 수 있어서 복소수킬러 빠른풀이에 꽤나 자주 쓰입니다
제가 고1이었을때도 많이 썼어요
복소해석학 독학 중이었는데 이 글이 딱 나오네
이 글은 딱 나오잖아?
수시충인데 1학년 내신 수학에서 되게 요긴하게 쓰여요
복소평면 쓰면 유명한 복소수 거듭제곱 안외워도 되고, 가끔식 까다로운 문제들 삼각함수에서 쓰는 일반각이나
복소평면에서 기하학으로 처리하는 문제들도 나와서 알려드리는게 좋을듯?