정말 멋잇는 문제 2
6x6판이 2x1의 조각으로 덥혀있다. 이때 항상 이 판을 두 직사각형으로 나눌 수 있음을 증명하여라. (어떤 조각도 두 개의 직사각형에 걸쳐있지 않다.)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅈㄱㄴ
-
영어 사탐은 점수가 안정적이고 국어는 1이 뜨긴해도 고정은 아닙니다 공익 근무하면서...
-
목표는 크게 2
-
전 클린하죠? 2
-
오르비엔 의대 서울대 옵티머스들이 넘쳐나네..
-
진짜 클린유저 등장 22
아님 망고....
-
눈이 오네 10년만에 봐요 대박
-
ㄹㅇ..
-
클린유저 메타 5
뭐냐뇨이
-
맞아야돼 좀 어이, 이것은 "하향 평준화" 라는 것이다.
-
우울핑 6
어쩔 수 없음... 나이로 육수생인데 부모님이 저런 말을 안 하는 게 이상한 거지
-
어디가서 오르비한다고 말 안해야겠다 ㅎㅎ
-
최근 분노농도가 너무 짙어지긴 한듯
-
신이 진성난수를 발생시켜서 랜덤한 논리가 생성, 간섭, 적자생존, 진화하여 세상을 만들었다.
-
클리유저인가요 3
갑자기 메타가 도네요
-
반드시 5시간 이상을 주무셔야합니다 반드시요 그 이하부터는 감소량과 비례해 하루가...
-
왈 승 3
^왈^
-
전 클린유저에요 3
ㄹㅇ
-
100 100 1 50 41 이면 어디까지 되나요
-
시대재종 높반 16
언미영화생: 78/95/2/90/90이고 영재고 졸업인데 목시 높반 가능할까요?...
-
바코드 출력해서 들고다닐까 이거 편할거같은데 출퇴근 카드는 따로 안줬음
-
일단 합격증 받았고 개인적으로도 참 많은 사건들을 겪고
-
오르비 너무 따수워 11
다들 사랑햐
-
맞팔구 6
알림창을 북적북적하게 만들어줘
-
If all you have is a hammer, everything looks...
-
작년 더프 과탐 0
작년 더프 지1 시험지 3개인가 있어서 3모 준비용으로 가볍게 풀어보려고하는데 퀄 괜찮나요??
-
셈퍼님 글보고싶은데 팔로잉목록 보는법을 모르겠네
-
반박은 받지 않아요 왜냐면 사실이긴 때문임뇨
-
홍익대 새종캠은 등록하자마자 바로 휴학할 수 있나요? 0
입학처보니까 그런거같아서요,,혹시 다녀보심분 잇나요
-
보면 안 될 걸 봐버림..
-
신이 진성난수를 발생시켜서 랜덤한 논리가 생성, 간섭, 적자생존, 진화하여 세상을 만들었다.
-
655.4x 살려만 다오
-
처음 딱 갔을때 책하나 가져가서 진도나가면 되나 아니면 레벨테스트 만들어가서...
-
본인상태 강의 6강 밀림 현재 카페인 과다섭취로 집중력 이상이슈 그래도 노력하면...
-
4칸의 힘을 보여줘
-
음음 범부여 5
나는 범부여 연논은 도저히 못풀겠다 언제나 범부임을 잊지 말것.
-
이재명, 오세훈, 이준석 토론실력순위 어떻게 보시나요? 8
이번대선 저렇게 나오면 귀가 즐거울거 같은데
-
애초에 수시에서도 문과 최상위는 설대 이과는 설대랑 메디컬 반반 먹는 대신...
-
으아악
-
후자 선택시 학과 변경가능) 닥전임 닥후임
-
과외하고싶다 1
ㄹㅇ 걍 안잡힘 영어 6월도 1인데 이런건 걍 쓸모도 없음 부모님 지인중에 내가 젤...
-
한국외대 합격생을 위한 노크선배 꿀팁 [외대25] [학교근처 맛집탐방] 1
대학커뮤니티 노크에서 선발한 한국외대 선배가 오르비에 있는 예비 한국외대학생,...
-
사탐런 윤사 10
사탐런으로 윤사는 비추임? 사탐 9과목 수능시험지 다 읽어봤고 윤사가 비문학 인문...
-
지고쿠라쿠 애니 1기 재밌게 봤는데
-
어떻게 하면 기분 안 나쁘게 말할지 너무 깊게 고민하는 것보다 상대방이 좀 기분...
-
ㅇㅈ 6
오늘은 드랍튜닝을 해보았어요!
-
이번 수능 80점 미적 (20,21,22 28,30)나왔습니다 미적은 그래도 어려운...
-
설경제 점공이나 모의지원 보면 연치, 원광치, 한양의 등등 의치대, 한의대 누가...
-
저 억울해요
-
저녁안먹었더니 0
어지럽네 @~@
알았어
이 문제 레전드야 개 쩌는 퀄리티야 멋진 문제야
참고로 1963년도 문제임뇨
우리 엄마도 없던시절이네
??
난 1000만원을 걸지 반례를 들어봐라
??
항상이라는건
임의로 첫 조각을 아무렇게 놔도
두 큰 직사각형으로 나눌 수 있단거임?
임의로 2x1 조각을 아무렇게나 배치해도 나눌 수 잇단거
두 직사각형이라는게
2×1의 테두리를 따라가는 큰 직사각형인거임?
어떻게 2x1을 배치해도 단층선이 하나 이상 나온다는 것임뇨.
내가 이해한게 맞구만
오카이
힌트
귀류법임?
원래 풀이는 귀류법 맞
오케이
이런류 문제 종종 체스판 가지고 풀던데 이것도 그건가요
체스판 가지고 푸는게 먼지 모루겟어요
https://orbi.kr/00067151715/
요런 느낌임 ㅋㅋ 이 문제는 아닌가보네용
컬러링 문제군요, 이 문제는 컬러링 문제는 아닌드읏요
힌트..
귀류법으로 단층선이 없는 배치가 있다 가정하고,
단층선을 없애려면 도미노가 18개보다 많이 필요해서 모순임을 끌어내면댐뇨
오켕이...
선이 없으려면, 1-2, 2-3, ... 5-6 을 잇는 도미노가 모두 어딘가에 존재해야함.(가로, 세로 모두)
세로로 1-2를 점유하는 도미노가 하나 존재하면, 1번행이 5칸 남고, 가로로 누운 도미노로는 이를 채울 수 없으므로 1-2를 점유하는 도미노는 항상 짝으로 존재함.
이러한 사실을 기반해서 같은 논리를 반복하면, 2번 행에서 3칸을 남겼을 때 1-2행을 추가할 순 없으므로 나머지도 짝으로 존재함. 즉, 세로로 배치된 도미노가 10개 이상 있어야 가로 선을 없앨 수 있음.
또한, 가로세로에 대해 일반성을 잃지 않으므로 가로 세로 각각 10개 이상 있어야 한다는 결론을 얻을 수 있고, 총 칸수가 36이라는 모순에 도달한다.
와 정답 ㅋㅋ 이것도 푸실줄이야
아까 잠깐보고 포기했었는데 다시 좀 삘받았어요 으흐흐
문제가 ㄹㅇ 멋잇음뇨. 63년도 문제고 이게 가지문제 (a)고,
(b)는 8x8일 때도 (a)가 성립하는가? 임뇨
호오.. 러프하게 봤을 땐 필요한 갯수는 일차로 증가하는데 총 칸수는 제곱으로 증가하니까 같은 방식의 증명은 어려울 것 같긴하네요
이사람 신인가
으흐흐
가로세로연구소밖에 몬알아들음