[칼럼] 돌림힘 평형에 대한 접근(1편)
안녕하세요. 저는 25 수능 현역으로 물리학2를 응시했으며, 44점을 맞아 2등급..이지만 조금이나마 물리학2를 공부하시는 분들에게 도움이 되었으면 하는 마음으로 이 칼럼을 적게 되었습니다. 사소한 변명을 하자면 6평 때 48을 맞아 2등급을 맞은 적을 제외하곤 모두 1등급이었습니다만(이렇게 보니 평가원은 9평을 제외하곤 모두 2네요..), 제 스스로 자격이 부족하다고 생각이 들어서 쓸지 말지 고민을 많이 했지만 겸손하게 글을 적어보고자 합니다. 자기소개는 여기까지 하고 본격적으로 시작해보겠습니다.
목차
1. 기본 돌림힘 평형
2. 질량 중심과 그 응용
3. 대상을 계로 인식하기
------------------
4. 2차원 돌림힘의 2가지 접근법(2편)
1. 기본 돌림힘 평형
돌림힘 평형 문제에서 주어지는 근본적인 조건은 크게 2가지입니다. 첫 번째는 힘의 평형이고, 두 번째는 돌림힘 평형입니다. 이 조건을 활용하는 가장 기본적이며 중요한 생각은 해당 물체가 평형이라면 어느 곳으로 축을 잡아도 돌림힘 평형이 성립한다는 것입니다. 즉 계산을 최대한 간단히 할 수 있도록 축을 설정하는 편이 유리하겠죠? 또한 이 생각에서 자연스럽게 상황이 변화해도 그 변화한 상황과 이전의 상황에서 발생한 토크의 변화량끼리 같다는 식을 쓸 수 있습니다. 다음 문제에서 간단히 적용해봅시다.
어렵지 않은 문제라 잘 푸셨을 것 같습니다.
저는 위와 같이 풀어봤는데요. 아마 평형을 유지할 수 있는 x의 최소와 최대의 상황에 대한 이해는 당연히 될 거에요. 전체 무게가 P에서 Q로 변화하게 되는 상황인 것이죠. 즉, 전체가 d만큼 변화한 토크=A가 x2에서 x1으로 변화하며 생성한 토크로 식을 세울 수 있겠죠? 이렇게 식을 작성하면 경제적으로 문제를 풀 수 있습니다.
2. 질량 중심
질량 중심이라는 것은 물체 전체의 질량 중심점을 의미합니다. 이를 이용하면 전체의 무게가 어디에 있어야 하는 지를 생각하며 문제를 풀 수 있는데요. 모든 질량을 중심점에 모으게 되면 그 점을 중심으론 돌림힘이 발생하지 않는 점이라는 의미도 있습니다. 즉, 이를 이용한 풀이도 1번의 풀이와 근본적으로 다른 풀이는 아니라는 점. 이러한 관점을 이용하면 힘을 합치거나 분배할 수도 있습니다.
즉, 이렇게 정리해볼 수 있을 것 같습니다. 내분을 역으로 이용하면 분배할 수도 있겠죠? 이를 이용해 문제를 풀어봅시다.
풀어보셨나요?
이런 식으로 질량 중심을 활용할 수 있겠죠? 조금 더 활용해봅시다.
1번의 풀이와 결합하고, 힘을 분배하면 빠르니 조금 더 응용이 필요해 어려웠을 수 있습니다.
이처럼 질량 중심을 활용해 힘을 합치거나 분배하여 문제를 직관적으로 빠르게 풀어나갈 수 있습니다. 나아가 질량 중심이라는 개념을 활용하면 물체가 막대에서 움직일 때 질량 중심의 속도를 구할 수 있습니다.
만약 질량 중심의 위치 변화가 없다면 위치가 변하는 물체끼리 변화량의 합이 0이면 평형이 유지가 되겠죠? 실제로 질량 중심의 위치가 변화한다고 하여도 위 공식을 활용하면 조금 더 간단히 상황을 기술할 수 있을 것입니다. 다음 문제로 정리해봅시다.
처음 풀면 좀 당황스러울 수 있는 형태의 유형입니다.
ㄷ은 스스로 풀어보세요!
3. 계로 관찰하기
여러 층으로 구성된 막대를 보면 돌림힘 평형을 여러 번 써야 하는 번거로움을 느끼실 수 있습니다. 그 때 여러 층으로 구성된 막대를 전체적으로 한 번에 관찰해봅시다. 가장 위 막대에 모든 줄이 종속되어 있는 경우에 계로 관찰한다는 것의 의미는 다음과 같이 유도 및 해석할 수 있습니다.
만약 다른 막대에도 줄이 연결된 경우는 어떻게 해석될 수 있을까요?
이처럼 P와 Q를 합친 한 막대로 인식하고 a, b ,e가 연결된 계로 인식할 수 있습니다. 역학에서 계에서 내력이 0인 것을 인지하는 것과 유사하게 생각할 수 있을 것 같습니다.
이것을 이용해 문제를 한 번 풀어볼까요?
한 번 풀어보셨나요?
이렇게 계로 관찰할 수 있습니다. 사실 위에 질량 중심 속도 문제도 이와 같은 이유로 합칠 수 있었던 것이기도 합니다. 한 문제 더 봐보죠.
질량 중심을 잘 이용해야겠죠?
간단히 풀리는 문제죠? 이제 줄 3개가 연결된 상태의 문제를 풀어봅시다!
풀어보셨나요?
계로 인식하면 최대, 최소가 되는 상황을 빠르게 인식할 수 있다는 장점이 있긴 했지만 계산할 때는 크게 유리한 지점은 없었네요. 이처럼 줄이 3개 이상 연결되는 경우엔 계로 상황을 인식하는 것이 상황 판단에는 유리할 수 있지만 계산할 때는 꽤 복잡해진다는 단점이 있습니다.
이상으로 1편을 마치고자 하는데 도움이 되셨을지 잘 모르겠습니다. 최대한 열심히, 오류 없이 전달하고자 했는데 오류가 있다면 지적 달게 받겠습니다! 2편을 적을 수 있는 상황이 된다면 2편으로 돌아오겠습니다. 긴 글 읽어주신 것에 감사드립니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
설날 첫날부터 사람 빼곡한거보고 좀놀랐음 살벌하다
-
더도 말고 딱 일주일에 한 번 나오는 수재였음 좋겠다. 0
10년에 한 번 나올까 말까한 천재 이런 건 바라지도 않으니까... 그래서 오늘도...
-
82라는데 엄.... 아니 경지면 45등급을 못벗어나지않나? ㄹㅇ뭐지다노
-
얼버기 2
-
고대 의대 학추 0
줄여서 고추 ㅋㅋ
-
25수능 기준 국어 1컷:표점 131 국어2컷:표점 125 표점 6점 차이난다....
-
96 98 1 99 99 기준 돌려봤는데 401점 나오네 적백은 필수인듯.......
-
췍디사웃 1
나는 정상 수
-
fim?이거 0
풀만한가요? 샤인미보다 어렵나요
-
얼버기 0
사실 이미 버스타고 학원가는중
-
서울대에가고싶군 1
-
ㅎㅇ 1
ㅎㅇ
-
농어촌이라 주변에 제대로된 학원도 없고 물어볼 사람도 없어서 여기에 한번...
-
고3입니당 수분감 후 뉴런 후 n제 전 기출 함 더 보려고 하는데 고2 모고 3등급...
-
올해는 0
연고 스나할 때 어문대신 상경을 쓰는게 ㄹㅇ 정배일려나요
-
수면시간기록용 1
-
엄청난 고민끝에 0
걍 지1할게요 투과목은 넘 무서워ㅠㅠ
-
19국어 간절함어쩌고글 댓글보고있는데 노란? 황금? 에피에 닉네임도 노란색인 계정은...
-
26년이 올까요 2
안 오지요 100% 안 오지요
-
ㅈㄱㄴ
-
현정훈 복테 0
5점이상 맞아본적이 없엉ㅠㅠ
-
재능 0
https://www.instagram.com/reel/DFaPMCETFv-/?igs...
-
커서 무서워
-
으허억..
-
더 미친듯이 달리면 됩니다 가만히 있어봤자 바뀌는거 없는듯
-
응, 알아
-
설공 목표로 재수하는데 생1이랑 같이할 과탐 하나 골라주세요 25수능 생명1...
-
작수 국어 화작 4등급 문 열었음 강민철t 강기분 + 새기분 문학 + 우기분 +...
-
컨설이 분명히 된다고 하면서도 60프로 정도란 말에 넘어가서 막판에 안넣고 그냥...
-
얼버기 0
다시자야지 한시간만..
-
예시로 김기현 파데랑 킥옾을 할때 저는 수업듣고 파데는 모든 문제 다풀고, 킥옾은...
-
죽는줄 알았네 진짜
-
개빨리품 이건
-
얼부기부기밤밤 1
레츠고바기바기붐붐
-
얼버기 3
-
얼부기온앤온 0
-
배가 넘 아파 5
햄버거의 부작용..
-
중학 영단어장 헷갈리거나 모르는거 총정리하려 하는데 고ㅑㄴ찮나요 올해 고2에요
-
짬뽕밥 맛집없나 4
개땡기네
-
실수를 해버렷구나.. 맞네..
-
고등학교 0
오로지 대학 진학을 위해 등수를 매기는 곳, 생기부를 채우는 곳 그 이상도 그...
-
쟤가 날 갠소 1
하고싶대소
-
다들 어케하심?
-
망자들 집합
-
신승범 선생님 미적분2 수학적 접근(하) 교재 갖고 계신분 사례합니다. 0
신승범 선생님 미적분2 수학적 접근(하) 교재 갖고 계신분 있을까요?? 2015...
-
기차지나간당 11
부지런행
-
큰일...
-
이 작가는 평생 로맨스만 그려야한다구 셍각해요 이색히들 이때 친구였음 남사친여사친은없다
물2 재밌겠다
현장에서 풀맞한 문제들이...