[칼럼] 기하 뉴비들을 위한 안내서 Vol.1 (Feat. 베르테르 19번)
부제 - 문제를 "다각도로" 바라보셔야 합니다
안녕하세요, 의대왔다고 입니다.
오늘 칼럼은 기하 문제를 다각도로 바라보고 해결하는 방법에 대해 다뤄볼까 합니다.
기하라는 과목 자체가 선택자 수가 적기도 하고, 그럼에도 기하라는 과목을 선택하시는 분들은 이미 기하를 잘 하시는 분들이 많기 때문에 이 칼럼이 얼마나 많은 분들께 도움이 될 지 잘은 모르겠습니다.
그러나, 혹여나 기하를 그저 "재능의 영역"으로 생각하고 막연히 기피하고 계시거나, 미적에 자신이 없어 선택과목을 변경하시고 싶으신 분들이 약간의 힌트를 얻어가실 수 있으리라고 생각하고, 오늘 칼럼은 그런 분들께 초점을 맞춰 진행해보도록 하겠습니다. 혹시나 나는 미적분 선택자지만, 과외에서 기하도 가르칠 필요가 있다라거나 가르치고 싶다(시급을 올려!) 하시는 분들도 읽어보시면 도움이 되실 것 같습니다. 그닥 딥한 내용은 나오지 않으니(학문 자체가 딥하지 못합니다) 편하게 읽어주시면 될 것 같습니다.
저희가 난이도가 높은 미적 문제를 풀 때는
1. 문제 발문을 몇 개의 친숙한 덩어리로 쪼갠 후
2. 각 덩어리에서 얻어내야 할 단서들을 얻어내서
3. 이를 조합해 나감으로써 해결합니다.
기하의 공간도형 문제들도 위와 비슷한 방식으로 해결해 나갈 수 있습니다.
다만, 문제의 발문을 "쪼개는" 대신, 주어진 입체를 다각도에서 관찰함으로써 저희에게 친숙한 상황들을 관찰하고 이로부터 필요한 정보들을 얻어냅니다. 이 내용을 조금 더 자세히 설명하기 위해 아래 문제를 분석해보도록 하겠습니다.
다음 문제는 기하를 공부해 보셨더라면 한번쯤은 들어보셨을 그 악명 높은 "베르테르 77제"의 19번입니다.
(시작부터 장난질이냐 라는 생각이 드실 수 있지만, 문제를 차근차근 여러 각도에서 바라보면 해당 문제가 그닥 빡빡한 문제는 아니라는 것에 동의하실 수 있으실 겁니다.)
위 문제를 끝까지 읽었을 때, 다른 조건은 그래도 머리에 좀 상황이 그려지는 방면, 정말로 물음표만 띄우는 발문이 하나 있을 것입니다. 바로 아래의 발문이죠.
해당 상황을 주어진 그림에 그대로 표시해보면 아래와 같습니다.
이걸 그리고 난 다음에 드는 생각은... "대체 어디가 A'T가 최대가 되는 지점일까" 라는 것입니다.
이 조건을 분석하기가 까다로운 이유는, 선분 A'B'과 점 T가 움직이는 원주가 한 평면 위에 올라가 있지 않기 때문입니다. 가령, 선분 A'B'과 점 T의 자취가 한 평면 위에 있었다면, A'T기 최대가 되는 점 T의 위치는 A', B', T가 한 직선 위에 있을 때가 될 것입니다.
그럼 이제 여기서 멘붕이 옵니다. 저 원주를 A'B'이라는 선을 포함하는 평면상에 정사영시켜서 타원을 만들고... 그게 일직선이 되는... 근데 높이는 또 고려해야 하는데... 머리가 아프죠.
근데 위 문제 상황을 아래와 같이 다른 각도에서 관찰하면 어떨까요?
위 상황을 평면 beta를 밑면으로 두고 관찰한 것입니다. 이 때, 점 A'을 평면 beta 위에 정사영시킨 점을 점 H라고 하면, 위 문제 상황을 아래와 같이 관찰할 수 있습니다.
이러면 H B' T가 한 직선 위에 있을 때 A'T의 길이가 최대가 됨을 직관적으로 쉽게 알 수 있게 됩니다.
그럼 아래와 같이 (나) 조건을 쉽게 분석할 수 있습니다. (밥아저씨가 된 기분이네요)
이제 구하라는 것을 구해서 답을 내보도록 합시다. 구하라는 것은 아래와 같습니다.
(어떠한 도형의 다른 평면으로의 정사영의 넓이를 구하는 방법도 크게 두 가지가 존재합니다. 이는 나중에 다른 칼럼에서 찾아뵙겠습니다.)
이 때, 주어진 문제 상황을 평면 alpha와 beta가 모두 일직선으로 보이게 되는 각도에서 관찰하면, 아래와 같은 모습이 보일 것입니다.
위 그림을 통해 AB와 PQ의 길이가 같고 평행하며, AB와 B'B가 수직함을 이용하여 원래 삼각형 ABB'의 넓이와, 삼각형 ABB'을 포함한 평면과 평면 alpha의 이면각을 알 수 있습니다.
따라서, 구하는 넓이 S는 아래와 같습니다.
풀이의 사고 과정을 차근차근 따라오셨다면, 이해가 가지 않는 부분이 딱히 있었을 것 같진 않습니다. 다만 물음표는 생길 수 있는데, 가령 아래와 같은 질문이 생길 수 있죠.
"야 너는 저걸 어떻게 평면 beta를 깔고 볼 생각을 했냐? 역시 기하는 재능이야."
위 생각을 하게 된 과정은 다음과 같습니다.
1. 저희는 원주 위를 도는 임의의 벡터를 다른 평면에 정사영시킨 벡터를 가지고 최대/최소를 논한 적이 단 한번도 없습니다. (못할걸요 애초에)
2. 그럼 A'B'을 원주가 있는 평면 위로 정사영 시켜봐야겠다는 생각이 자연스럽게 따라옵니다. 이 때 A' B'은 모두 고정점이기 때문에 정사영 시켰을 때 기존 문제 상황 대비 동점이 더 늘어나지도 않으며, 저희에게 "친숙한" 그 문제상황이 나타나기 때문에 옳은 방향을 잡았다는 것을 느낄 수 있습니다.
해당 문제의 풀이를 한 페이지에 정리하면 다음과 같습니다.
뭔가 상당히 복잡한 사고 과정을 거쳐간 것 같지만, 막상 저희가 한 일은 주어진 문제 상황을 다각도로 바라보는 것 그 이상 그 이하도 아니었습니다. 풀이 과정도 막상 계산하고 쓸 건 별 게 없죠. 이게 미적과 비교했을 때 기하의 엄청난 장점이라고 생각합니다.
다만, 주어진 상황을 3D 모델링 마냥 머리에서 빙글빙글 돌려가면서 관찰하는 것이 부담된다면, 권하기 힘든 과목인 것 같습니다. 장단이 명확하죠.
(위 풀이과정을 따라오시면서 요리보고 조리보고 알 수 없는 둘리 둘리 하셨다면 기하런은 지양하시는 게 좋습니다. 뭐 당연한 얘기를 이러고 길게 써 놨냐 하신다면 표점 vs 안정 1을 두고 잘 저울질하셔서 현명한 선택을 하시길 바랍니다.)
사실 이제까지 기하 문제의 해설은 그림 1개, 약간의 계산, 답으로 이루어진 것이 가장 아름다운 해설이라고 생각해 왔었습니다. 그러다 문득 그 아름다움에 남들이 공감할 수 없다면, 과연 그것이 진정으로 아름다운 것일까 라는 생각이 들었고, 논리 과정을 자세히 풀어서 써 본 칼럼을 작성하게 되었습니다.
기하를 사람들이 막연히 어려워하는 이유 중 하나가, 잘하는 사람들이 풀어둔 풀이에서 "도통 어떤 흐름으로 사고가 진행되었는지를 읽어낼 수 없다"인 것 같습니다. 그래서 앞으로도 종종 위와 같은 칼럼들로 찾아뵐 예정입니다.
"기스퍼거 저 놈의 머릿속은 도대체 어떻게 생겨먹었는가"에 대한 궁금증이 있으셨던 분들은 한 번씩 들러주시면 감사할 것 같습니다.
미적, 공통 관련 칼럼도 하고 싶은 이야깃거리가 생기면 잘 정리해서 들고 와보도록 하겠습니다.
긴 글 읽어주셔서 감사드립니다.
(좋아요와 팔로우는 사랑입니다. 이 사람이 더 많은 칼럼을 쓸 원동력이 됩니다!)
0 XDK (+1,000)
-
1,000
-
평가원이 네이버랑 카카오랑 OpenAI랑 성능 비교하려고 과탐 표본에 AI 표본...
-
이번 수능 화확생윤사문에 43311이고 백분위는 76 85 98 95입니다. 제...
-
안녕하세요, 코딩하는 알로스입니다! 드디어! 저의 온전한 홈 그라운드인 곳의 정보...
-
안녕하세요, 코딩하는 알로스입니다. 정말 오래 기다리셨습니다! 이렇게 칼럼으로...
-
안녕하세요. 부산대/경북대 컴공에 재학중인 2학년입니다. 2학년을 마치고 1년 휴학...
-
건국대학교 컴퓨터공학과 23학번으로 들어갈 것 같은데 학교 커리큘럼을 보니까...
-
가군엔 숭실 소프트 안정으로 넣을건데 원래 다군도 그냥 숭실 컴학 넣으려다가 홍대...
-
오르비 처음으로 글 써보네요 다들 한번씩만 의견 부탁드립니다
-
둘 다 현재 진학ㅅ 기준 최초합뜨고 아주대 소프트는 추합뜸. 아주가 솦이랑 전자 둘...
-
수시러여서 정시 공부 별로 안했는데 점수가 꽤 잘 나와서 고민 중입니다.. 컴공...
-
국어 3 (80) 수학 1 (89) 영어 2 화학 2 (38) 생명 1 (43)...
-
이 점수로 이런 등급 받는다는게 너무 스스로 죄책감들지만 적정 라인에 숭컴 아주컴...
-
건대 컴공이랑 경희대 컴공이랑 시립대 컴퓨터과학부랑 경희대 소프트융합 있으면 순위가...
-
너넨 대학 가자마자 새로운 레이스 시작이다... 명문대 붙었다고 나처럼 팅가팅가...
-
동생도 컴공관데 2
얘도 나 닮아서 이론쪽 재능이 없어서 그런지 말라죽어가네 힘내라
-
여동생이 보는 웹툰에 신념때문에 A를 안주는 교수가 나왔다 0
저런 갈아잡숴도 모자란 놈을 마치 신념이 있는 것처럼 포장하는 것을 보고 화가...
-
국수(미적)영생지 32321 정도 맞으면 어디 갈 수 있을까요? 컴공쪽 가야하는데...
-
컴공은 최초합 8칸 하향이고 여대라 왠지 꺼려지긴 하는데(여고나왔는데 잘안맞았음)...
-
다른거 다 안따지고 나중에 워라밸만 봤을때
-
컴공 자격증 1
컴공 학부 수준으로 전기기사처럼 딸 수 있는 컴퓨터관련 전문자격증이 있나?
-
경북대 컴 기계 6
둘 중에 붙으면 ㅇㄷ갈거? 컴공이 끌리긴한데 전문직 느낌이 없고 정년이 짧다고 해서...
-
설컴 -> 메이저 의대 점수 연고대 -> 치대, 한의대 서성한 -> 약대, 수의대,...
-
새해 첫 질문: 다군 숭실대 AI융합학과 vs 아주대 소프트 vs 홍대 자전 0
숭실대 AI융합: 5칸 끝자락, 5칸 합격률 50% 아주대 소프트: 4칸, 합격률...
-
가군: 경북대 컴퓨터 5칸 합격률 100% 나군: 인하대 컴공 4칸 극초반 합격률...
-
대깨컴인데, 전과를 생각하면 홍대 산공도 좋을 것 같기도 합니다 하지만 숭실대가...
-
경북대 최저 0
수학 2등급 영어 3등급 지구과학3등급으로 맞추려고하는데 과탐 평균으로 최저 들어가는거 아니죠..?
-
전 문과고 어딜가든 복전이나 전과할건데 대학 순위가 너무궁금해요! 컴공을 주로 하고...
-
평소보다 수능을 못보기도 했고 공부한 시간도 짧은게 아쉬워서 재수를 할...
-
컴공 기준으로 어느 라인일까요
-
부산대랑 아주대 1
부산대 컴이랑 아주대 컴 두곳다 합격했다고 가정했을때 어디를 가는게 더 좋을까요?
-
뜬금 진지글) 컴공이 간판 메리트가 없단건 일견 사실같지만 28
사실 그런말 하는 사람들이 말하는 '찐실력으로 다 씹어먹는 애들'은 이미 간판도...
-
올해 고컴 잘하면 지방의 급도 될거같은데
-
둘 중 한곳만 써야한다면 어떻게 하실건가여?
-
예상 급간 0
국어 영역 (언어와 매체) - 백분위 86% 수학 영역 (기하) - 백분위 96%...
-
올해 나형사탐 문과 컴공 교차지원되는 학교가 고대 숭실대 말고 또 어디있나요??...
-
아까 어디서 딥러닝 뭘로 공부하죠 이런 글을 봤는데 4
지우셨는지 찾을 수가 없게 되었길래... 주변 보면 Andrew Ng의...
-
컴공분들 이거 무슨 바이러스인지 아시는 분 있어요?? 12
부팅하면 계속 HACKED로 도배된 이 검은색 화면만 뜨고 아무 일도 안...
-
컴공 질문이요 0
컴공에서 디자인과 연관성이 큰 전공은 무엇이 있나요?
-
컴공 ?? 0
서울 자사고 3.0 수시 시립 건국 중앙 동국 아주 인하 세종 정도 보는데 어ㄸ
-
ㅈㄱㄴ 기타 댓글로 ㅊㅊ받음
-
물리는 물리1 한번 돌렸구요 코딩은 쌩노베입니다 물리2/코딩 예습을 해야할 필요가 있을까요??
기하칼럼은 좋아요
기하에 관심은 없지만 동정의 의미로 좋아요
ㅋㅋㅋㅋㅋㅋㅋㅋㅋ 아... 슬프지만 감사합니다... :)
최고로 멋있어지는 방법!!
그저 시호님의 발자취를 걷고 있을 뿐입니다...
ㅋㅋㅋㅋ 우리 기하 많이 사랑해 주세요... 감사합니다!
기하해야되나
현역이라 수능 기하치면 공통미적확통기하를 다 해야돼요ㅠㅠ
그럼 이참에 논술로...!
현역 화이팅입니다 ㅠㅠ 할 게 넘 많죠
읽어주셔서 감사합니다!
정성이 들어간 글 잘 읽었습니다 :)
기하 1등급으로서 너무 강추합니다 아주 좋아요
ㅎㅎ 기하가 잘 맞으시는 분들은 정말 편하게 1등급 받아가실 수 있다고 생각합니다
이것도 아주 큰 도움이 되죠 ㅎㅎ 다음에 관련 내용으로 칼럼을 작성해볼 예정입니다
좋아해주셔서 감사합니다 ㅎㅎ!
미적러지만 개추
그저 "범부"일뿐...
방금정독했는데벽느껴져요
어질어질합니다
ㅎㅎ 열심히 써 봤습니다 감사합니다