[수학칼럼] 부정적분에서의 극값
안녕하세요 저능부엉이입니다
오늘은 부정적분 파트에 대한 칼럼으로 찾아왔습니다
오늘 다뤄볼 주제는 부정적분에서의 극값입니다
부정적분에서 극값이라는 워딩이 나온다면
여러분이 해야할 행위는 99.99% 미분입니다
그럴때 우리는 다음과 같이 행동해야 합니다
1. 미분하기 (미분할 수 없다면 미분할 수 있게 만들자)
2. 극소,극대,극값은 도함수의 부호변화 유심히 관찰
예시 문항을 통해 설명하자면
230620 입니다
먼저 극값에 관한 워딩이 나온다면 공통영역에서는
필연적으로 미분을 할 수 밖에 없다는 것을 명심하세요
하지만 미적 선택자가 아니면 이대로 미분하기가
어려워 보입니다. 그렇다면 미분가능하게 만듭시다
미분이 이렇게 됐습니다
그렇면"g'(x) 의 부호가 1과 4에서 음에서 양으로 바뀐다"
이사실을 사용해야 겠습니다(극솟값이기 때문에)
|f(x+1)|-|f(x)|라는 함수를 그리기는 힘드니
|f(x)|에서 x좌표가 1차이나며 함수값이 같아지는 순간을
생각해봅시다
근데 지점이 총 3군대 나오는군요
하지만 우리에게 중요한것은 극솟값입니다
부호가 -에서 +으로 가는 순간이죠
따라서 |f(x+1)|가 |f(x)|보다 커지는 순간입니다
그렇기에 그림과 같이 x=1과 x=4인점을 찾을 수 있습니다
이후 대칭축이 3이고 f(1)=-f(2)인것을 이용해
계산을 끝내면 바로 답이 나옵니다
231112입니다
먼저 x=2에서 최솟값 0을 지닙답니다
따라서 2에서 극솟값이겠고 미분할 수 밖에 없습니다
우리는 그렇기에 두 가지 식을 얻을 수 있습니다
먼저 1번을 사용해 문제에서 주어진대로 그림을 그리면
이런식으로 나옵니다
(극솟값이기에 부호변화가 2에서 음-양으로 바뀌는게
포인트입니다)
이후 2번식을 사용하면
이런식으로 마무리되고 1/2에서 4까지 적분이기에
간단하게 정답 -1/2가 나옵니다
220620입니다
극값이라는 워딩이 나왔습니다
일단 미분해봅시다
다음과 같이 미분되었습니다
우리는 g'(x)의 부호변화가 단 한번 일어나도록
a값을 만들어야 합니다
일단 f(t)^4은 항상 0이상이기에 2번함수는
오직 a에서만 부호변화가 일어납니다
따라서 적분한 함수와 앞의 1번함수가 공통된 근을 가져서
그 근에서 x축과 접하도록 만들어야 할 것입니다
2번함수가 근을 갖는 지점은 x=a에서만
따라서 가능한 a값은 3,5 뿐입니다
오늘 칼럼의 핵심을 요약하자면
부정적분에서 극값내용이 나올경우 무조건 미분
극값은 도함수의 부호변화가 핵심
이 되겠습니다
사실 어느정도 수학을 하는 사람에게는 매우 쉬운 내용이기도 그럼에도 의외로 극값에서 도함수의 부호변화를 바로 연결 짓지 못하는 사람이 존재하다고 생각해서
행동강령적인 느낌으로 칼럼을 적어 봤습니다
들어주셔서 감사하고 좋아요는 제게 큰힘이 됩니다
다음에도 좋은 칼럼으로 돌아오겠습니다
[수학칼럼] 등차수열 정복하기 -
[수학칼럼] 정보의 용도 파악 -
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
무게중심 6
G베가지마 베베
-
베가지마 베베
-
아니 짐정리를 다 해버려서 공부를 할 수가 없잖아?! 4
어쩔 수 없이 책을 읽어야겠는걸~ 유튜브 보는 거 보다 나으니 이거 완전 럭키요단이자나!
-
2025 잘생긴 윤리 김종익 교재가 있는데 2025버전 강의 들어도 될려나요...
-
가끔씩 연락은 1명 친구는 1명...
-
왜들 기하는 안하냐 난이도 표점 공부량 고려해보면 미적탈출 충분히 할만한 점수인데...
-
죽는 것보다 나은데 참.... 적어도 만 28이면 절대 어린 나이도 아니고...
-
중학생 싸게 과외하는거…
-
쉽지않네 쉬운거날먹이나 하려했는데
-
진짜들은 오르비대신 현생을 탈퇴함
-
아는 사람 기다리는 중인데
-
F=mg 2
베가지마 베베
-
공부 할까 말까 4
7시부터 잇올 가서 6시까지 했는데 또 해야되나 롤체 플레3을 가야되나
-
이미 오르비 할거같이 생겼으면 7ㅐ추 ㅋㅋㅋ
-
억 아악악악
-
앱등이들아 큰거오나? 13
농협 쓰는데 신한 만들어야겠당
-
좀 깰듯.. 반듯한 대학생인줄 알았는 선생님이 오르비에 으흐흐 거리면서...
-
예적금넣는건 미친짓임 (체감물가상승률 > 예적금 이자율) 무조건 빅테크에 투자해야함...
-
“쌤 물개물개예요?”
-
밖에 내놓고다니는 손이랑 얼굴만 까맣네
-
저의 집으로 글씨체 암살단들이 와서 저를 죽일거 같습니드 저를 지켜주세요 그들의...
-
꼭마햄 논란있다고해서 보랴고했는데 안열리네 뭐노
-
어디가 더 동강남?
-
건강 10
챙겨라
-
미2=미적분 ? 6
완전히 같은가요? 아니면 빠질거 좀 빠지고 추가된거 좀 있고 한건지
-
어디가 좋을까요
-
인서울 소신발언 14
뱃지 없으면 인서울 아니라고 생각해요.... 반박시 반박 안받음
-
이거 표 그대로 만드는 거 프로그램 워드 쓰나요 한글 쓰나요..? 어떤 양식...
-
하 수2 뉴런 땡기는데 들어볼까... 왤케 책이 듣고 싶게 생겼지
-
솔직히 둘이서 좆목하는거 조금 보기 싫다에요
-
글자키우는템플릿 2
덕코로 실시료 내고 쓰셈요..
-
본인 실력의 0.8배~1.2배 되는 문제들을 꾸준히, 다양하게, 적당한 긴장감...
-
하늘색이랑 분홍색 부분끼리는 같은 의미로 읽어야 하나요? 이건 평가원 지문은 아니고...
-
현역 정시 멸망 ㅋㅋ
-
50% 2
Remain is also 50%
-
예전에 이슈됐었던 가천대vs경북대 보고 진짜 놀랐음... 이분은 뭐 서울사는것도...
-
금연을 안 해서 여자친구가 없는건가? 라고 하기엔 담배 안 피워도 안 생기더라
-
화상과외 9
여기 글올리면 절대안구해지겠지? ㅋㅋㅋ
-
부탁드림다
-
진짜 문화생활을 즐기는 인싸 아니고선 서울은 딱 부동산투자용 도시인듯 당장 거기...
-
공부는관성인거같음
-
한 30억 주면 가능할듯 근데 아니라면 도저히 못 끊겠음
-
이 구성이 마감된다는게 교재캐쉬 주는 프리미엄 제품을 안판다는거임 환급을...
-
머쉬룸 스프에서 11
머쉬룸을 모르는건 어느정도임?
-
공부를 감성이 아니라 이성으로 했어야 했는데 감성으로 실제로 수능에는 별 도움...
-
이번 수능 한지 +지구에서 사탐런 하려고 하는데세지는 표점,응시인원 이슈땜에 고민이...
-
이 문제에서 HM이랑 CD가 평행한 걸 찾는 경로가 뭐예요?? ㅠㅠ ‘아 이 길이가...
-
성적 상승 압박 없음? 첫과외라 그런가 못올리면 안될거같은 느낌..
-
굴비 3
맛있네
왜 재업함?
중간에 인수분해 하나 잘못한거 있었음...
그래서 수정후 재업함
부정적분보단 긍정미분이죠
와 이사람 오랜만이네
지금쯤 뭐하고있을까
담달에 전역하심
흔히들 가르치지만 정말 중요한 태도
칼럼 잘 읽고 있어요
뻘글쓰는건 역시 다른 사람인거죠? ㅋㅋ
그래프간 부등호 대소 판별 유익 추 goat
이거 삭제 ㄴㄴ
첫?번째문제 아예 부정적분을 F(x)라 두고 미분해도 됩니당
근데 누가 봐도 고능부엉이신데 닉넴 좀 바꾸세요 ㅠㅠ
231112 에서 극솟값을 2에서 가지는 게 아니고 0에서 가지나요?
앗...오타
231112번을 저렇게 걍 풀어도 되는군요 ㄷㄷ
누구세요???!
세로드립임?
삼각방정식도 다뤄주시면 감사하겠습니다
담에 한번 노력해볼께요
이게 내가 아는 부엉이지