[수학칼럼] 수2-속도,가속도
안녕하세요 다시 칼럼으로 돌아온 저능부엉이입니다
오늘은 속도,가속도,위치에 대하여 다뤄볼 예정입니다
오늘 강조할 몇가지 포인트는
1.함수 2개 나오면 연립
2.속도 그래프가 도움될때가 있다
3.삼각형으로 도형적 접근
입니다
일단 바로 문제로 들어가 보죠
240614입니다
먼저 운동방향을 한번만 바꾼다는 점에서
a=1또는 2a=1이겠습니다
그럼 한번 각각의 상황에 따른 그래프를 그려보죠
보면 아래 상황에서는 시각적으로도 위치변화량이
음수가 된다는 사실을 알 수 있습니다
따라서 최댓값에서는 전자의 케이스가 맞고
계산만 해주시면 됩니다
이 문제의 경우 그래프를 통했을경우 두번째 케이스의
추가적인 계산을 줄일 수 있었습니다
이처럼 그래프를 그리는 경우 그래프를 그리는데
시간도 별로 걸리지 않을 뿐만 아니라
문제 상황을 더 한 눈에 관찰 할 수 있습니다
하지만 항상 그래프를 사용해야 하는것은 아닙니다
240911입니다
일단 앞에서 강조한대로 먼저 둘을 연립해줍시다
이 식에서 양수 t의 최솟값을 구해야 하는상황이죠
그렇다면 케이스 나눠서 계산해줍시다
t의 최솟값이 3이 나오게 되는군요
이후는 계산만 해주면 됩니다
이 문제에서 처음에 그래프를 그리지 않았던 것은
함수를 파악해서 얻을 수 있던게 없었기 때문입니다
함수를 그려서 우리가 얻을 수 있는것은 정확한 값이
아닙니다. 상황 분석을 할 수 있는것이죠
첫번째 문제에서는 위치변화량 비교를 해야됐습니다
그렇기에 그래프를 통해 상황분석을 했었습니다
하지만 두번째 문제에서 우리가 구해야할값은
정확한 t의 최솟값이었기에 그래프를 그리지않고
먼저 식으로 바로 들어갔던 것이죠
다음은 삼각형의 중요성을 알아봅시다
241110입니다
먼저 두번째 문제해서 했던것처럼 바로 적분하고
연립시켜줍시다
이문제의 경우 거리의 증감여부를 판단해야됐기에
그래프를 그려줬습니다
그러면 b값과 삼차함수 비율관계로 a값도 바로 나옵니다
이제 움직인 거리를 구해야 하는데
이 경우 도형적 접근을 할겁니다
왜 도형적 접근을 하냐면
이렇게 계산량을 줄일 수 있기 때문입니다
첫번째와 같은 계산풀이보다 후자의 풀이가 압도적으로
간편합니다
이렇게 두 개의 삼각형 넓이를 더하면 17/2
답이 간단히 나옵니다
이렇듯 도형풀이는 문제풀이 길이를 상당부분
단축할 수 있다는 장점이 있습니다
비슷하게 250619입니다
운동방향이 2번이나 바뀌는 상황을 알기위해 먼저
그래프로 접근을 해봅시다
이렇게 되고 운동방향이 2번째로 바뀌는 지점은
t=3+4/k인 시점이 되겠군요
그럼 t=3+4/k인 시점에서 위치가 1이 되도록 식을 세우면
다음과 같습니다
0에서 3까지 적분은 계산이 그리 어렵지는 않아보이지만
일차함수 적분은 약간 까다로워 보이는군요
하지만 처음에 말했듯이 삼각형으로 생각합시다
구해야 할 부분이 노란색 삼각형이기에
밑변×높이로 간단히 구할 수 있습니다
오늘 수업에 대해 요약하자면
1.속도 그래프를 어떤식으로 사용해야 할지가
중요합니다
사실 이 부분은 문제를 많이 풀다보면 자동적으로 얻어지는
감각이기도 하지만 그럼에도 앞에서 말했듯
그래프를 문제상황을 가시화하는 용도로 기억하시면 좋아요
2.삼각형 접근은 유용합니다
특히 움직인 거리를 구할때 속도의 음양이 바뀔때
가장 유용합니다. 240310,240510같은 교육청에서도
자주 나왔던 내용이죠
오늘 칼럼은 여기까지고
다음에도 좋은 학습자료로 돌아오겠습니다.
열심히 썻으니 좋아요 한번씩만...
[수학칼럼] 등차수열 정복하기
[수학칼럼] 정보의 용도 파악
[수학칼럼] 부정적분에서의 극값
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
서울과학기술대학교 합격생을 위한 노크선배 꿀팁 [과기대25] [새내기들을 위한 시간표 짜는 팁] 0
대학커뮤니티 노크에서 선발한 서울과학기술대학교 선배가 오르비에 있는 예비...
-
가군 300명 모집 > 예비 115번 다군 164명 모집 > 예비 209번 과는...
-
변곡점 살살 문지르면 정신 못차린단 말이에요
-
좋아요 수는 한참 넘은거같은데 ㅋㅋㅋㅋㅋㅋㅋ
-
중등 kmo 기출 중학생 때 영재고 준비하면서 이런 거 많이 풀었었는데 쩝..
-
집간다! 2
어제는 평일 내일은 휴일
-
우우 0
으우
-
질문받는다 6
ㄱㄱ 공부는 허수지만 일은 많이해봄
-
단어암기 어떻게 이렇게 노잼이냐 눈에 하나도 안들어옴 영단어 싹다 버리고 싶음 지문...
-
말이안됨ㄹㅇ
-
맞다고 하면 저 진짜 낼부터 핸드폰 놓고 다님 ㅡㅡ
-
걍 최적의 풀이 /적당한 풀이/해야할 생각 이것저것 쓰다보니 머리 ㅈㄴ 굴리니까 몇...
-
무물보 23
5분만 심심함 좀 달래줘
-
몇문항 정도고 난이도는 어떰?
-
솔직히 친구 몇명있음 난 3명
-
근데 21살 모쏠임 ㅅㄱ
-
[성적 인증] https://orbi.kr/00071836019 [칼럼글 모음]...
-
옛날 위상 아닌가 이유가 궁금함
-
고 1 2 모고에 화작 언매 나오던데 수능 언매 화작 강의로 대비하는건 너무 해비한거요?
-
물 : 1단원부터 막힘 화 : 1단원부터 막힘 생 : 유전 개씨발새끼 지 : 그나마...
-
질문받아드림
-
양승진 선생님 행동영역 이라는것도 배워보고 싶은데 김기현 선생님 들을거면 그냥...
-
추합 등록 0
추가합격 조기발표를 했을 때 등록이나 등록금 납부 일정은 그대로 가는 건가요?
-
개념 설명하는건 이거는 뉴런 듣는 친구들이면 다 아는 내용일 거 같아 하고서는 다...
-
꿀잼이었는데
-
sky 서성한 중경외시 건동홍 중에
-
컨셉 잘못잡음..힝 11
이거 1년뒤에 보면 현타 오지게 올거같은데
-
보기만 해도 꼴리는 음란함수가 있네요❤️❤️ 음함수에서는 식 몇개만 세워주면 되요...
-
킥오프 워크북 0
이번 방학에 노베 탈출하려고 파데 킥오프 병행중인데 워크북 문제푸는데 시간이 많이...
-
전 존나 많이 실존한다고 생각합니다
-
칼럼 제외 전부 다 잡담?
-
반박시 사형 >.<
-
ㅈㄱㄴ 마더텅이나 다른 교재도 거의 25버전임
-
키는사람들은 좀 숙이고 다니셈
-
야레야레 2
못 말리는 아가씨
-
재종 단과 1
현재 재종다니면서 단과로 사탐+수학 듣고있는데 사탐은 단과 구지 안듣고 인강으로만...
-
현역이구 물2지1 하고 있습니다 물2는 작년에 개념 좀 돌려서 기출 풀고 있고 물1...
-
오타쿠라는 나쁜말 할시 즉시 자살함
-
군대가기싫다 7
왜 난 한남으로 태어난거지
-
홍대는 독문과 붙었는데 독일어 1도모름 아예 노베 숙대는 중문과 붙었는데 중국어는...
-
문제 퀄 이런 거 다 거르고 (주관적인 거니까) 시험 자체로만 보면 언매-화작 표점...
-
외힙이랑 보컬로 섞은 플리는 왜 안생성해주지 보컬로 한번틀면 보컬로만 뜨고 외힙한번뜨면 외힙만 뜸
-
걸밴크 2기 기원 11
제발
-
그러기 위해선 열심히 살아야해 몸도 마음도 물질도 마음껏 줄 수 있는 그런 멋진 사람이 되고 싶다
-
해설써야되는데 0
귀찮아 요즘 공모 타율이 안좋아서 뭔가 동기부여가 안 됨
-
인생은 쥬1지와 같습니다 올라갈때도 있고 내려갈때도 있지만 항상 하드하지는 않을거예요
-
일본 노래일 뿐…
-
이제 오버워치를 하러 가볼까
유익하농 ㅋㅋ(아직 안 읽음)
좀 있다 집가면서 정독할게요..
가가가가가가가가가속도 칼럼도 써주세요
미분을 몇번을 한겁니까
221114 해설 기대하겠습니다 선생님
속도를 빙자한 그래프문제..
ㄷㄷ
물개님이 쓰신줄;
칼럼 한번 올라올때마다 대충 뻘글 15개씩 올라오니까 칼럼 하나 올렸으니 또 뻘글 공세 시작되겠군;;
이거 읽고 물1 역학 정복함
다항함수는 잘 자르고 분해하고 대칭성까지 생각해주면
정석대로 계산하는것보다 빠른 경우가 매우 많지요
잘 읽고 갑니다
그래서 또 얼마나 뻘글을 쓰시려고
그래도 속도가속도는 난이도가 안높아서 이정도면 다 씹어먹을 듯
잘읽었습니다