[박수칠] 미분계수와 함수 극한의 관계에 대하여
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
전화 끝. 0
-
서늘한 감각 2
-
과 상관없습니다
-
얼버기 0
-
삼차함수 세실근합 일차함수 빼도 똑같은 건 ok 근데 문제 풀다보면 상수를 빼도...
-
어쩌면 가야만 하겠다는 생각이 든다 못가면 진짜 정신병 제대로 걸릴듯 못가면 죽을...
-
1~2개 틀린 사람도 많은듯.. 먼가 곳곳에 다 숨어있는듯…. 좀 불안
-
지금 컴공도 레드오션인데 전자가 유망한게 반도체 때문이었는데 반도체 시장도 같이...
-
20살 20.5살 21살 21.5살
-
현 본인 06 / 12월입대, 헌급방4점가산점채움.일반병 8달동안 공부쉼....
-
ㅈ댄건가여
-
국어-역대급 노베입니다 진짜 국어를 너무 못해서 전역 전까지 기초 쌓을만한 방법 및...
-
어떤 일 때문에 여름부터 지금까지 힘들어하는건 에반가 0
그냥 잘살다가 갑자기 눈물쏟고그럼... 이제 이겨내야할거같은데 안댐..
-
사탐약대 3
사탐으로 되는 약대 있나요? 사1과1은 대부분 안되던데
-
현역 때 수시로 지방 사범대 평균 등급 5 학교 네임벨류만 보고 간다는 마인드로...
-
6일 당일에 온라인으로 뽑을 수 있나여??
-
좋은아침 0
사실 알바끝나고 집옴.
-
07년생이고 고1때 자퇴하고 수능 일찍봐서 주변에 예비고3 친구들이 많아서 연락이...
-
미적 단과 엄소연t 하나 다닐 건데 과제 종류랑 문제수 아시는 분 있음? 1-2월에...
-
화1생1입니다 41/47맞고 4/1 떴어요 화생 말고는 전부 쌩 노배에요 26수능...
-
평균 정도 하면 b0이고 그러면 학점 3.0/4.3이야 너무 힘들어 난 암기를 되게...
-
4년연속
-
금방 내려오실 줄 알았는데
-
상당한 노동이 필요하겠구나
-
얼버기 0
잠 제대로 못자면서 여행갔다오니까 낮밤 정상화 되는듯
-
오르비 망했네 3
그건 사실임뇨
-
미신 종교 그딴거 ㅈ까라안믿는사람인데 곧 성적표뜨고 원서철이 되니까 미신같은걸...
-
시야도 좁아지고 생각하는 것도 되게 일차원적으로만 생각하게 되는 느낌
-
메가패스 환불 0
기하랑 물2 공부해 보고 싶어서 생각없이 메가패스 샀다가 지금 통장에 돈이 없다는...
-
ㅈ댔네...
-
단순노동 하면 머리 맑아지는 것처럼 공부도 머리 맑아지게 하는 효과 있는거같음 ㄹㅇ
-
국어 독서 1 문학 2 문법 2 이렇게 틀림 현실적으로 문법 2개는 다 맞았어야했다...
-
가위눌리고 비명지르면서 깼어요 개무섭네ㅠㅠㅠㅠㅠㅠㅠㅠㅠ
-
근데 이게 천연 스테로이드라고 운동할때마다 ‘그 말’ 이 생각나서 알아서 자극오더라...
-
수학1 개념강의에 시급2면 쎈거같은데 개꿀인듯 학원도 공짜로다니고 정말 개좋네 진짜
-
이거 ㄹㅇ 지금 내상황이랑 완전 똑같네 입에 풀칠할 돈도 없으면서 미국유학에...
-
공대는 0
대학 상관없고 과가 중요한 건가?-? 공대생 아니라서 궁금해요,,
-
서울대를 가지 못했다는 사실이 너무 괴롭고 창피할 것 같음...
-
내일 조교 알바 면접 보러가는데 제가 1월에 해외여행을 가거든요 일주일 정도 빠질거...
-
자야지 1
진짜 자야지
-
대부분의 안티는 원래 팬이었을 확률이 높다는 말이 무슨뜻인지 이제 알 것 같음 2
5수해도 서울대 못가면 서울대 부수고 싶을듯...
-
흐음 1
원피스재밌네
-
그럼 설대식으로 4.8점 날려먹은 셈인데 4.8점이면 c발 쓸수있는 과가 몇갠데
-
이거 풀고 강K나 서바 풀면 ㅈ밥처럼 보인다 뭐 이런거
-
수면매매 시작 2
기술적취침 익절가설정하고잘예정
-
언미화1생1 원점수 71+22(93) 70+18(88) 3 48 41 고대가능?...
-
난 잘잘게
-
기하 1틀 4
기하 30번 1틀인데 내년 수능 확통으로 돌릴까요? 스카이 목표입니다
좋은글입니다!
감사합니다! ^^
소위 말하는 '야메'같아 보이는 나만의 공식도 논술에서 제대로 증명을 해내면 사용해도 되겠지요?
글쎄요... 채점 기준에 대해 잘 모르지만
교과 과정에 충실하게 작성한 것이
모범 답안이라 생각합니다.
특히 논술의 경우에는
문제 해결에 필요한 교과 과정 내용을 제시문의 형태로 주기 때문에
그 테두리 내에서 해결을 해야 좋은 점수를 받을 수 있을 겁니다.
갓수칠
언제 들어도 좋은 말이네요~ ^^
이걸 적절히 연습할 수 있는 문제가 예전 사관학교 ㄱㄴㄷ문제에 있죠
아 그런가요?
요즘 출제 경향에선 살짝 벗어난 감이 있지만
개념 이해에 참 좋은 유형이죠~
뭐야
미정계수구하는거분명히배웠는데왜처음부터뭔소린지하나도모르겠지???
ㅠㅠ
미분계수의 정의 바로 다음에 나오는
함수의 극한 유형을 복습하면 됩니다~ ^^
사실 많은 사람들이 아무 관계가 없는 내용인데 미분가능성을 전제로 두고서 막 미분하는 경향이 있는데 그런 사람에게 보여주면 아주 좋은 글인것같습니다!
감사합니다.
개념에 대한 이해가 부족한 상태에서 문제를 풀 때 위험한 것이
'이렇게 해서 답을 맞췄으니 다음에도 똑같이 하면 되겠지'
라고 생각하는 걸 겁니다.
답을 맞췄더라도 미심쩍은 부분이 있다면
이유를 꼭 확인해야 되겠죠.
앞으로도 개념을 이해하는데 도움이 될 만한 글
종종 올리겠습니다.
딱저네요..미분가능성 전제해서 막미분..
이관데 이런개념들부족하면 수1을다시보는게맞겠죠?
h가0으로갈때 h^2이 0+로가는건 왜그런건가요..
(실수)²≥0이기 때문이죠.
h→0이면 h²→0이고, h≠0이니까 h²>0입니다.
따라서 h²→0+가 됩니다.
함수 y=x²의 그래프를 그리고 x→0일 때 y값의 변화를 보면
0보다 크면서 0으로 다가가기 때문이기도 하구요.
그리고 본문의 내용들에 대한 이해가 부족하면 수학1을 다시 보기보다는
공부할 때 디테일 있게 하는 것이 중요할 것 같습니다.
개념 이해한 다음 다양한 유형을 풀 때 맞췄다고 그냥 넘어가지 말고,
해설을 한줄한줄 보면서 왜 이 방향으로 가는지 자꾸 따지는 거죠.
' f"(x)>0이면 f(x)가 아래로 볼록하다 ' 라고 외우지 말고
' f"(x)>0이면 f'(x)가 증가하고, f'(x)가 증가하면 접선 기울기가
점점 증가하는거니까 f(x)가 아래로 볼록하다 ' 라는 식으로
중간 과정을 집어 넣으면서 이해하는 것이 중요합니다.
갓수칠님이 마지막에 말하신방식대로 미2공부를 다 끝냈습니다
근데 개념이부족하다는 찝찝함과 불안감은 왜항상있는걸까요..?
미2정석을 꼼꼼히봐도 개념을확실히안다는 느낌이안오더라고요
예를들어 역함수문제를풀때 일대일대응이라는것에 꽂혀서풀다가 문제가안풀림을알고
10분고민뒤에 단조증가 단조감소의 특징을 기억해내고 문제에적용합니다
풀었는데도 찝찝하고.. 체크해놧다가 다시풀어야하나 생각도들고..
개념을 완벽하게 안다는 것을 제자신이 어떻게 알수있을까요?
답변해주시면 정말감사하겠습니다 ㅠㅠ
어떤 책으로 공부하든, 개념을 완벽하게 알 수는 없습니다.
중요한 것은 반복하면서 이해도를 끌어올리는 것이죠.
문제 풀 때도 마찬가집니다.
내가 이해한 것보다 높은 수준을 요구하는 문제도 있고,
'내가 잘못 이해했구나'라는 깨달음을 주는 문제도 있습니다.
이럴 때 필요한 것이 필기고 정리죠.
지금 이해했고, 풀 수 있다 하들 나중에도 그럴거라는 보장은 없습니다.
개념 공부하면서, 문제 풀면서 새롭게 깨달은 것이 있으면 꼭 기록해야죠.
그리고 완벽해야한다는 강박 관념보다는
빈 부분이 생기면 꼭 보충해야 한다는 강박 관념을 가져야 합니다.
수학은 '이 정도면 됐다'라 생각하는 순간 망하거든요.
개념 복습 안하고, 문제 덜 풀면 금방 감이 떨어집니다.
이 부분 개념 복습할때 항상 힘들었는데 자세한 설명 감사드립니다.
앞으로도 특정 개념/유형에 대한 해설을 종종 올릴 예정입니다.
많은 관심 부탁드립니다~ ^^
WOW 시원하네요 진짜 최고네요 미분계수의 정의에 따르면 저 풀이가 안되는데 저렇게 푼 풀이가 왜 있는지 엄청 궁금했었는데... 저것 때문에 잠이 안와서 늦은 시간까지 저 풀이에 대한 것만 엄청 찾았네요
정말 고맙습니다♡ 진정 수학 고수 이시네요
감사합니다! ^^