[박수칠] 분산을 (편차)²의 평균으로 계산하는 이유
오늘은 어떤 주제로 글을 쓸까 고민하다가 예전에 봤던
조관 선생님의 포스팅 ( http://orbi.kr/0008006413 )
과 관련된 내용을 써보기로 했습니다.
평균, 분산, 표준편차를 열심히 공부한 학생이라면
한 번 쯤은 해봤을 고민이죠.
——————————————————————
왜 분산은 (편차)²의 평균으로 정의될까?
(편차의 절댓값)의 평균으로 정의하면 안되나?
——————————————————————
(변량)-(평균)으로 정의되는 편차는 변량이 평균보다 큰지, 작은지
그리고 평균으로부터 얼마나 떨어져 있는지를 나타내는 지표입니다.
그러다 보니 산포도 계산에 편차를 쓰는 것은 지극히 당연한 일이죠.
하지만 편차의 합은 0이기 때문에 편차의 평균 또한 0입니다.
이 때문에 편차를 제곱해서 0 이상의 값으로 바꾼 다음
평균을 계산하게 되고, 이를 분산으로 정의합니다.
여기서 편차의 제곱 대신,
편차의 절댓값을 쓰면 안될까요?
이를 알아보기 위해
세 변량 a, b, c (단, a < b < c)의 대푯값을 x로 두고
(편차)²의 평균과 (편차의 절댓값)의 평균을 조사해봅시다.
(1) (편차)²의 평균은 다음과 같습니다.
그리고 분자가 x에 대한 이차식임에 주목해서
완전제곱꼴로 변형하면 다음과 같습니다.
따라서 (편차)²의 평균은 일 때
즉, 대푯값 x가 a, b, c의 평균일 때 최소가 됩니다.
(2) (편차의 절댓값)의 평균은 다음과 같습니다.
그리고 분자가 일차식의 절댓값의 합임에 주목해서
분자로 만든 함수의 그래프를 그리면 다음과 같습니다.
따라서 (편차의 절댓값)의 평균은 x=b일 때,
즉 대푯값 x가 a, b, c의 중앙값일 때 최소가 됩니다.
대푯값 x가 평균일 때 (편차)²의 평균이 최소,
대푯값 x가 중앙값일 때 (편차의 절댓값)의 평균이 최소인 것은
n개 의 변량 에 대해서도 마찬가지입니다.
(3) (편차)²의 평균
따라서 (편차)²의 평균은 일 때,
즉 대푯값 x가 의 평균일 때 최소가 됩니다.
(4) (편차의 절댓값)의 평균
i) n이 홀수일 때
일 때 최소
ii) n이 짝수일 때
x가 구간 에 속할 때 최소
i), ii)로부터
(편차의 절댓값)의 평균은 또는 일 때
즉, 대푯값 x가 의 중앙값일 때 최소가 된다고 할 수 있습니다.
따라서 (편차)²의 평균은 대푯값이 평균일 때 최소이므로
평균 에 대한 분산을
으로 정의하는 것이 자연스럽다는 것을 알 수 있습니다.
또한 변량 의 중앙값이 일 때
(편차의 절댓값)의 평균
를 '평균편차'라고 하며, 임금 근로자 연봉 분포처럼
변량의 분포가 한쪽으로 치우친 경우에 산포도로 많이 사용합니다.
그리고 대푯값/산포도로 평균/분산(또는 표준편차)을 사용하면
중앙값/평균편차의 조합보다 공식의 변형이 자유롭다는 장점이 있습니다.
덕분에 분산을 { (변량)²의 평균 } - (평균)²으로 계산할 수도 있고,
미분/적분이 상대적으로 쉽죠.
추가적인 장점이 또 있는데
그건 제가 이해를 못해서...
[참고 자료] 기초통계학의 숨은 원리 이해하기 (김권현 저)
[알림] 박수칠 수학 미적분1-적분법 단원 부교재가 업로드 되었습니다.
본교재 문제에 수능/모평/학평 기출 54문제가 추가되었습니다.
다음에 작업할 단원은 미적분2-적분법입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅅㅂ
-
화작에서 3개틀리고 폭사 ㅅㅂ
-
아니 바로 윗층 헬스장에 줌바댄스반이 생길줄 알얐냐고ㅜ 덕분에 기합 들을 때마다...
-
원래 평가원 한해에 같은 작가도 2번 출제 안하나요?? 2
이건방금앎
-
상위권들이 의대안쓰니까 그대로 밑도 다 좆되는거아님?ㅅㅂ
-
문학 조언좀요 1
문학 비문학 둘다 시간은 적당히 (각각 20~25분컷) 걸리는데 비문학 정답률은...
-
문학 질믄 3
보기에서 우활을 지켜나가는게 화자의 가치관 추구?인데 5번선지에서 우활을 떠나보낸...
-
의대증원 유지하는 희망회로 기화하는 시나리오는 없나
-
머릿속으로 아파트아파트 재생되는대 어떡하냐 수능에 해당 소재 나오면 뛰어내린다
-
별의별 불평 불만도 많아지는구만
-
9모때 나왔었나??
-
9월 말로 돌아간다면 뭐 선택할거임? 두개다 풀어보신분 전 간쓸개
-
현실에 저런사람이 진짜 있을까?
-
진짜 너무 귀엽다... 쪼매난 애기들이 ㄹㅇ 미래다..
-
수험생 피해가 가시화되고 있는 상황에서 대통령실은 “어 원래 4000명 증원할 거...
-
강 한 사람이 이기는 것이 아니라 걍 하는 사람이 이긴다.
-
ㅠㅠ 또 나만 어렵지..
-
1130~0600 해볼까
-
드릴 워크북 다른거 다풀고 미분적분 파트만남았는데 너무 어려운데 마무리 하는게...
-
23수능 0
언매 91 확통 97 영1 사탐1 96 사탐2 86 이면 고대 낮과 가능했?
-
문학이랑 언매 24수능보다 어렵거나 비슷한 모고 추천좀 0
저는 내후년에 볼건데(군대끼고 반년은 강제휴학이니) 앞으로 그거보다도 어렵게 나와도...
-
ㄹㅇ 책 가져와달라고 할껄...
-
그냥 김승모중엔 1회랑 3회가 넘사라 그렇지 이감상상이랑 비교해서는 그래도 김승모...
-
발췌하니까 몇개 놓치는게 있어서 글도 쉽고 별로 안길어서 비문학 풀듯 푸는데 저만 일케 품?
-
아침 7시에서 8시 반으로...씁
-
어제 정신병 터져서 아빠한테 못하겠다고 질질 짜다가 혼났는데 그대로 2시간 울고 푹...
-
찐따+ENFP 2
최악의 조합
-
중학생때 봤던 건데 요즘 애들은 이거 잘 모르겠지...
-
반박 안받음
-
4시간 자고 보는 이감
-
일단 맘이 편함 나랑 사고회로면에서 좀 달라서 좋음 차라리 F보다 T가 편함 ㅠ
-
아니 풀수는 있게해줘야지.. 오히려 옥린몽이나 그런게 더 쉽고 복합에서 그냥 뻥…...
-
진지하게 남잔데 8
강민철 보고 설레면 좀 위기임?
-
누가 좋은가요??? 정석민t 들을려고 했는데 문법강좌밖에 없네요
-
굿모닝 2
-
9등급통통이라우럿서
-
짐 정리하다가 3
수완 수학 한 1/3정도 안푼거 발견했는데 걍 후딱 풀까말까
-
그래도 적당히 보낸건가...?
-
진짜 현대 고전 둘다 소설 지문 난이도 미친거 같다 …. 연계없이 봤는데 진짜로...
-
탐구가 안 오르네 ㅅㅂ 교육청처럼 나올 가능세계는 없냐
-
좀 멍청한 질문같긴 한데.. 둘이 형태는 같은데 식이 왜 다르게 나오는 건지 잘...
-
반어법 0
많이쓰는데…,,,,,,, 다들 반어법의 반대로 알아들으시더라고,,,,,
-
<<< 이거 원래 독서 제재 리스트에 없었는데 수능 며칠 전에 홈페이지에 정오사항이라면서 올렸음
-
"현돌과 가격 2배차이" 현돌:모고로 배운 내용을 총정리하며 분석하고 모르는...
-
진짜 미치겠네 2
국어 실모보는날만 되면 전날 즐똥하고자도 아침 8시 20분쯤에 또 마려움 아 ㅋㅋ
-
광일햄,,,,, 0
이감 해설 안찍는다죠,,,,, 이평문 후기봤을때 눈치깠어야했는데
-
실검에 윤성훈T 이름 나와 있길래 눌러보고 느꼈음
ㅋㅋㅋㅋ 오르비스티커 너무 귀여워여
그러니까요... 진짜 예쁘게 잘나왔어요.
그 외에도 확률변수에 대한 적률 적률생성함수 중심적률등과도 관련이 있지 않을까 생각됩니다.
물량공급님 외계어도 쓸 줄 아셨군요.
좀 배워야겠다...
적률생성함수라는 마법의 도구가 있더라구요
찾아보니 학부 확통 과목에서 배웠던 함수네요.
지금 보니 뭔 얘긴지 하나도 모르겠음 ㅎㅎ
최소점이 평균값이기 때문에 제곱을 쓴다는 건 결과론적인 해석이 아닐까요?
제곱을 써야만 하는 수학적 필연성이랄지, 이런게 있으면 좋을 것 같은데요
예를 들어, 정규분포 함수의 식에는 제곱을 이용한 표준편차가 들어가죠. 만약 표준편차를 다르게 정의했을 때 같은 식을 유도할 수 있는지, 그렇지 않다면 왜 그럴 수밖에 없는지 같은 것들 말입니다
본문의 내용은 결과론적인 해석이라기 보다
{ (변량-평균)²의 합 } / (변량 개수)를 분산으로 정의한 이유의
일부라 할 수 있습니다.
근본적인 이유로 들어가자면
{ (변량-대푯값)²의 합 } / (변량 개수)를 최소로 하는 대푯값이 평균이고,
이 평균을 모집단과 표본의 대푯값으로 쓰면 모평균의 가장 합리적인 추정치로
표본평균이 똭~ 나타납니다.
이 부분을 설명하려면 '최대우도추정법'이라는 걸 알아야 하는데
여기서 굳이 설명할 필요도 없고, 저도 잘 모르거든요 ^^;
그래서 '고등학교 수준에서 이 정도 설명이면 충분하겠다'
싶은 선에서 끝냈습니다.
이런 것 보면 아무 호기심 없이 그랬구나...그렇구나...하고 받아들이는 제 자신이 다행스럽네요. 문과여서 여태 통계문제 풀면서 저런 증명이나 원리를 몰라서 틀린 적도 없고 개이득
몰라도 되는 건 이과도 마찬가지입니다 ^^
그냥 궁금해할 수험생들을 위해 정리한거예요~
loss funtion?
손실함수라...
6시그마 교육받으면서 배웠던 건데
갑자기 왜 나올까요? ㅎㅎ
경영쪽 아니고 경제학부 통계시간에 교수님께 배운건데..
추정량과 모수의 차이를 나타내는 함수를 loss function 이라 하지않나요,,? 이거 배우면서 글에 나온 내용도 같이 알게되고 했던 기억이 나서요~
아~ 용어만 같고, 정의가 다른가 봅니다.
제가 배웠던 것은 품질관리쪽에서 손실 비용 계산에 쓰는 함수거든요.
이유식님이 얘기하신 손실함수까지는 공부를 못해봤어요 ^^
저도 맛보기정도만 한 비루한 학부생입니다 ㅠ
댓글 달아주셔서 감사합니다.
헐 신기하네요 이거 궁금했었는데 감사해요ㅋㅋㅋ 오 신기하다 맨날 하필 왜 제곱일까....이랬었는데
제가 기다렸던 반응이 드디어 나왔군요.
감사합니다 ㅎㅎ
절대값을 왜 안쓸까 했는데 쓰는데가 있기도 하군요
그러게나 말이에요.
저도 참고자료 보면서 처음 알았어요~
조만간 책나오면 살건데 박수칠님 글 너무 도움됩니다 모든글 지우지 말아주세요ㅠ
안지울테니 걱정마세요~ ^^