미적분1 자작문제
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
사귀던 여자친구가 정말 착하고 친절하고 예의바르고 예쁘고 잘해줬는데 알고보니...
-
이제부터 랜덤탄다.
-
고2 교육청으로 본 3개의 수학 시험들중 다 합해서 3개까지 틀렸을면 가세요 아님...
-
님들 양심적으로 1
나형은 100이어도 과외안하겠죠?
-
둘이서 6병 마셧다 기억 안남
-
하던 거나 해야지.
-
설자전 가능? 0
자전 기준 411.7 가능할까요 ..?
-
오지훈 딱 대라
-
기차지나간당 5
부지런행
-
국어 언매 3컷 1
공통 -18 선택 -5 합쳐서 77인데 3컷 불가능할까요? 메가 기준으론 표점...
-
맛있더라 그래서 지금 피곤해
-
수학 노베 0
예비 고3인데, 현재 모고 수학 5로 노베입니다. 내신이 썩 좋은편은 아니라...
-
조오온나 피곤하네.
-
다 일어나서 글써
-
여기는 또리가 점령한다 !
-
현대소설 중 이런 문학 있는 느낌
-
아침이 즐겁구나 0
공식 6연승 대 꼬 마
-
메가 덕분에 인테그랄 쓰고 있긴 한데 솔직히 개구림 내가 만들어도 이거보단 나을 거 같은데;
-
퍼즐퍼즐퍼어즐 2
퍼..
-
ㄹㅇ
-
목동 시대 단과 0
이동준쌤 목동 시대 단과 공통반 마감이던데 라이브반이나 어떻게 들을 방법 없을까요?...
-
천잰데?
-
깨고 싶지 않은데 7시만 돼면 눈이 떠지는 이 기묘한 시츄에이션…
-
나지금지하철 3
학교 일등으로 가겠구나
-
잠이안옴
-
응떡 마렵네 0
이따 먹을까
-
얼리버드 취침 4
-
당황스럽네 뭐지 진짜 둘다 1 못받은건 이번이 처음이라 그런가
-
크아아아!!! 얼버기 11
오늘? 2시에 자는 사소한 이슈로 인해 기상이 쉽지 않았네요... (저는...
-
시대 겨울 단과 1
시대 단과 처음 갈 예정입니다. 미적 개념을 듣고 싶은데 어떤 선생님이 좋을까요?
-
근본적인? 행복은 존재에서 나오는게 아닐까 사람들이 우선 성취에서 기쁨을 느끼지만...
-
얼버기 3
ㅈㄱㄴ 오늘도 화이팅!
-
김민재 골이라니 4
ㅇㄱㅈㅉㅇㅇ?
-
기상 완료 드디어 오늘 예비군 마지막날
-
열심히 해보곤 있는데 원래 과탐에 stay 할 것 같네요,,, 십헬과목
-
인듯... 외모관리 중요한듯.
-
선결론) 물2 24.77, 47, 99, 69~70 화2 23.80, 44,...
-
궁금한게 2년뒤 대학에 입학하려면 최소 공군을 5월에 입대해야하는데 커트라인 보니깐...
-
77ㅓ억 간만에 대승이구나
-
얼버기 1
진짜 이른 기상이다 수도병원 가야해 피곤s
-
다 맞게써도 답안이 교수님 맘에 안들면 합격 못한다는거 진짠가여!?ㅠㅠ
-
안녕하세요 고3 정시생입니다 제가 고2 6모때 수학 높5맞고 고2 8월에 정시로...
-
밤샌다매. 12
님들아. 잠 안잘거라매.
-
ㄱ ㄱㄱㄱㄱㄱ
-
Ebs 기준으로 컷예측하고 ebs가 타사이트보다 백분위랑 표점이 널널해서다<< 라는...
-
아짜증남 0
대충 수능 망쳐서 딴 사람하고 비교되어 슬프다는 글썼는데 이런 글쓸시간에...
-
챔스보자
-
섹스
-
95 100 100 100을 성적표 오류라고 100 100 100 100으로 속임
-
기존 로고가 걍 눈알 심볼이니까 1. 눈알 심볼 그대로에 얇은 선으로 날렵하게...
21?
15?
둘다 아녜요..
ㅠㅠ
히익? 3차함수 아녜여?
맞아용
(0,0)에서 만나면서 y= -x랑 접하는거 아니에요?
(라) 조건을 보시면 (0, 0)을 지날 수 없어요..
라 조건이 x가 0보다 같거나 작을때 x값이 커질수록 (0,0)과 이은 기울기가 커진다 아니에요?
제가 알기론 이게 아마 기출에 있었던 것으로 기억을 하는데 (라) 조건은 조금 조작이 필요해요.. 그리고 (0, 0)을 지날 수가 없어용 x2=0 x1=-2 이런것만 대입해봐두요
라 조건에서 x2랑 x1으로 나누면 g(x2)/x2 > g(x1)/x1 아니에요?
네 맞아요 전 그걸 증가함수로 해석하길 바랬던건뎅.. 기울기로 봐도 무방하긴 하겠군요 지금 보니.. 그렇다고 (0, 0)을 지날거란 보장은 없지만용
증가 함수라구여? 감소함수도 되는데요? 오히려 증가함수가 안되는거같은데
g(x)/x가 (x<0)에서 증가함수인걸용..
아 통채로 말씀하신거구나 전 당연히 g(x)만 이야기하시는줄 알았죠
죄송합니다 제가 설명이 모잘랐네요 ㅠㅠ
제가 수학을 못해서 자세힌 모르지만 x2=0 일때랑 x2=/=0 일때랑 자료해석을 다르게 해야하는거같은데 맞아요?
그래야 0,0 못지나가는거랑 감소함수인게 같이 나오는거같은데
x2=/=0이 무슨 의미인질 모르겠네요 ㅠㅠ..
그럼 답 75에요?
X2가 0이 아닐때랑 0일때랑 (라) 조건해석을 다르게 해야하지않나요? 라는 말이에요
그렇게 하고난다음에 마지막에 g(-1)=0 조건이랑 계수 음의 정수 조건으로 부정방정식 비슷하게 풀었는데 맞아요? (0,양수)지나면 (라)조건 위배되서 (0,음수)해서 풀었늗네
네 75 맞아용 x2가 0일때는 x1*x2로 못 나눠주니 대입해서 g(0)<0이라는 것만 밝혀주고 x2가 0이 아닐때는 x1*x2로 나눠서 생각해주는거에요 ㅎ
ㅇㅎ,, 제가 첨에 나눌때 조건파악을 좀잘못했네요 수알못 울고갑니다 광광,,
아니에요 잘하시는데요 ㅎㅎㅎ GOAT..
아녜요 진성 수알못입니다
ㅎㄷㄷ 그럴리가용
이과황님 이런식의 역기만은 옳지 않습니다
역기만이라뇨 ㅠ 전 그럴 능력이 없어용
거의 직감으로 g(x) 삼차함수로 놓고 푸니깐 쉽게 풀리긴 하는데
정석으로 풀려면 어떻게 도출해야 하나요?
g(x)가 4차함수인경우 2차함수인경우 3차함수인경우의 그래프 개형을 생각해서 풀도록 했어요 최고차항 계수도 그래서 줬구요
hx가 역함수 있다는 조건으로 개형추론 정도
f(x) = cx + b라 하자
f(x)의 역함수를 I(x)라 하자
I(x) = (1/c)x - (b/c) 이고
(가) 조건에 의하여
f(x) = cx + b = I(x) = (1/c)x - (b/c) 이므로
(1/c)x - (b/c) = cx + b 이고
c^2 = 1 이고 (b/c) = -b 이다
또한
(나) 와 (다) 조건에 의하여 g(x)는 이차 이상 사차 이하의 다항함수이다
또한
(라) 조건에 의하여 x2=0이라고 할때 g(x2) = g(0) < 0 이다
또한
함수 h(x)가 x=0에서 미분가능하므로
함수 h(x)는 x=0에서 연속이다
따라서
f(0) < 0이고
c=1일때 b=0이므로 f(0) < 0 이라는 조건이 성립할 수 없다
따라서 c= -1이고 b<0이다
따라서 h(x)가 실수 전체의 집합에서 미분가능하고 역함수가 존재하므로
h(x)는 실수 전체의 집합에서 감소해야 한다
따라서 g(x)가 최고차항이 음수인 이차 또는 사차 다항함수일 경우
x<0 인 어떤 실수 x에 대하여 g'(x)>0인 구간이 존재하므로
h(x)가 실수 전체의 집합에서 역함수를 가질 수 없다
따라서 g(x)는 삼차함수이고
g(x)= -x^3 + px^2 + qx + r이다
h(x)가 x=0에서 미분가능하므로
f'(0) = b = g'(0)이고
r=b이므로
g(x)= -x^3 + px^2 + qx + b이다
또한 g(-1) = 1+p-q+b=0이므로
g(x)= -x^3 + px^2 + qx + q - p - 1이고
g'(x) = -3x^2 + 2px + q이다
또한 g'(0) = f'(0) = -1이므로
g'(0)=q=-1이고
g(x)= -x^3 + px^2 - x - p - 2이다
또한
g(0)=-p-2<0이므로
p>-2이고 p는 음의 정수이므로 p=-1이다.
따라서 g(x) = -x^3 - x^2 - x - 1이고 f(x) = -x-1이다.
따라서
h(x)를 -1부터 1까지 적분한 값의 절댓값 = {(g(x)를 -1부터 0까지 적분한 값) + (f(x)를 0부터 1까지 적분한 값)}의 절댓값 = 25/12 = a
이므로
36a = 75
멋진 해설입니다!
자작문제 검색하다가 들어왔어요~
문제는 풀었는데 궁금한게 있어서요 (라) 조건은 g(0)의 부호를 알 수 있는것말고 다른 정보는 도출해낼 수 없나요? 예를들어 평균변화를 대소비교를통해 이계도함수의 부호를 알 수 있는것처럼요~혹시 문제 만드실때 (라)조건에서 다른 의도가 있나 해서 여쭤보아요!
(라)는 g(x)/x가 증가함수인걸 의도했습니다 ㅎ
그렇네요ㅎㅎ문제 너무 좋네요 앞으로 미적분 문제 시간되시면 또 만들어주세요~
ㅎㅎ.. 노력해보겠습니다..