2023학년도 사관학교 수학 4점 문항 손해설지
2023학년도 사관학교 수학영역 4점 문항 손해설지.pdf
안녕하세요. 박민후입니다.
7월 30일에 시행된 2023학년도 사관학교 1차 선발시험 4점 문제에 대한 손해설지입니다.
공통 문항만 있으며, 손해설지의 내용 중 궁금한 점이 있다면 말씀해주세요.
파일에는 4점 문항 전부 수록되어있습니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
화작 기다려라 0
형이 간다
-
과연 누가 더 행복할까
-
그거 재미있나요?
-
생윤은 고정하고 윤사, 사문 둘 중에 하나 고를려고 하는데 각 과목의 특징 같은 걸...
-
물리 고인물이 되기 위해 하루에 공부를 10시간한다치면 물리에 3시간은 하고있는데...
-
실제 등급컷이랑 많이 다를려나
-
이거는남자들도다동의할듯
-
내신은 1.5쯤에 진학사 보면 고대식 200점 만점에 199입니다
-
반박 안받음
-
미적 기출 1회 N제 10개 실모 120개
-
대석열 vs 의룡인 팝콘 개꿀잼ㅋㅋ 누가 먼저 부러질까
-
일리 있는 말이 되기 때문이죠
-
모닝콜 부탁할께 9
내 전번 다들 알지?
-
잇올 재수정규반은 꼭 2월에 입학해야하는 건가요? 3월에 입학할 수는 없나요??
-
이과 딱대 8
생물학 책 읽는 문과 ㅁㅌㅊ? (p.s)강대국의 흥망은 이거 다읽고 다시 읽기 시작할 예정
-
고3때 혹은 예비고3때 선택과목 변경해보신분 있나여.. 어떻게 말해야 바꿔주실까요…
-
사탕 하나만 받아도 너무 좋아하는게 보인데,,,,
-
시험기간이라서 못봄
-
3수박고 3뜬 인생ㅈ망허수는 다시 나가봄..
-
닉변마렵네 2
걍 아무생각 없이 지었는데 슬슬 쪽팔림
-
팥붕이라니 17
전 팥 자체를 안 먹슴뇨 송편도 깨송편만 취급함.
-
기차지나간당 6
열차 운행의 중요한 과제는 열차를 신속하게 운행하면서도 열차끼리의 충돌 사고를...
-
붕어빵은 팥붕이지... 33
-
아직보는중 호리미야도 같이 보느라
-
참고로 게이는 절대 아님 그냥 궁금함
-
지구 1컷 여론 22
42 -> 44 -> 43 왜 이런 식으로 바뀌는 거 같지... 42인데 꼭 1...
-
마누라도바꿔서 ㅋㅋㅋㅋㅅㅂ 존나웃기네 ㅋㅋ
-
둘 다 들어본 사람 있으면 장단점좀 알려주세요
-
마크가 문제임 근데 1화부터 살짝 하드하던데..ㄷㄷ
-
옵만추할 사람 구합니다 36
만나기전에혈핵형만알려주세요 되도록이면음주안좋아하시는분이면좋겠어요
-
자러감뇨 3
지금 자면 한 11시에 깰거같음뇨. 개인적인 희망사항으로 2시까지 잠들어 잇을 수 잇다면 좋겟음요
-
화작 2개틀에 9번문제 어휘임뇨 수능장에서 뭔짓을한건지 진짜 살자 개마려움뇨..
-
그냥 잘칠 거라는 미련을 버리고 봐야되는 건 아는데 0
그래야 진짜 마음 편하게 보는 건가 흠 아무튼 이제 언매 이 ㅆㅅㄲ<~버리고 화작...
-
대화에 못 끼겟어서 자러감뇨
-
다풀고 시간 20분남기고 15분동안 44번만 고민하다가 다행히 고쳐서 맞춤
-
씹덕) 급함 34
아부지가 내가 군대갔을때 이사갈수도 있다고 하는데 요거 미리 포장해놓는게 났겠지?
-
그냥 오르비에서 들어서 아는거
-
제 최애는 6
1등은 호시노 아이고 2등은 아카네임뇨 이유는 이쁨뇨
-
저거 마지막껀 이투스인가? 더프도 거의 대부분 서울대 스카이 나오거나 못보면 서성한...
-
일단 카나 싸대기 없애고 아쿠아가 사실 유서를 써놓는 거임 하늘에서 지켜볼테니...
-
진짜 잘껀데 0
저 잠 들때까지 글 쓰는것좀 멈춰보셈뇨
-
재수 평가 좀 2
작년 평백 77 이었는데 이번엔 86나옴 많이 별론가..? 난 그래도 많이 올라서...
-
8칸 추합 7
입시하면서 8칸 추합 처음봄 ㅋㅋ 개신기하네
-
최애의 아이 9
최악의 결말 1위 나히아가 장례식에서 부활해서 부동의 1위 등극
-
결혼생각은 4
2%정도 잇고, 자식 낳을 생각은 0% 정도 잇음뇨
넵 ㅎㅎ
와 이런 정교한 해설지 원했는데
공부에 도움이 되길 바랍니다 ㅎㅎ
QCC로 알게 되었는데 오르비 활동도 하시는군요 팔로우 눌렀습니다. 도움 많이 받고 있어요
공부에 도움이 되었다니 기쁩니다 ㅎㅎ
15번에서 부등호 나누신 것은 어떻게 하신건가요? 저는 그래프 보고 일일이 찾아봤는데,,, 궁금합니다!
식은 2acos(b/2)x를 (a-2)(b-2)만큼 내리고 절댓값을 씌운 형태입니다.
(a-2)(b-2)가 2a 이상이거나 -2a 이하라면 그래프 개형이 꺾이지 않을 것이고, 그 사이라면 그래프가 꺾일 것입니다.
이에 따라 f(x)와 2a-1 의 관계 양상이 달라지므로, 저렇게 케이스를 나눈 것입니다.
14번 ㄷ 에 어떻게 g`(b+) g`(b-)가 각각 다르게 나오나요??
g(x)는 x=1을 제외한 나머지 구간에서는 확실히 미분가능합니다. 따라서 ㄷ에서 b가 1이 아니라면, 좌미계와 우미계가 같으므로 둘의 차는 0이 나와야 합니다.
하지만 우미계 - 좌미계 = 4라고 나와 있으므로, b=1이어야 합니다. x=1에서 g(x)가 첨점을 갖는다면 좌미계와 우미계가 다를 수 있는 가능성이 있으니까요.
감사합니다
아 그런데 왜 앞에 부분이 우가 되고 뒷부분이이 좌가 되나요??
h->0+이기 때문입니다