[이동훈t] 기출로 기출 풀기 (241128) 미적분
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
오늘은
기출로 기출 푸는 법에 대한
얘기를 해보려고 합니다.
이 글은
기출 분석을 어떻게 해야 하는가에 대한
구체적인 예시가 될 것입니다.
22 학년도 수능 미적분 30 번
24 학년도 수능 미적분 28 번
이 두 문제로 설명해보겠습니다.
본론 들어가기 전에
수학 기본 체력에 대한
아래의 글도 함 읽어보시고요.
[이동훈t] 수학은 피지컬이지. 딴거 있나.
이제 가보자고 ~
시험장에서
위의 문제를 읽고 나서 바로 ...
푸른 칸 : 함수 f(x)의 정의 (방정식, 그래프)
붉은 칸 : 점의 이동 (대칭/평행/확대축소) + 식의 변형(필충관계)
위의 두 가지가 떠오르지 않았다면
아래 문제에 대한 이론적 복습이
부족한 것입니다.
위의 문제에 대한 자세한 해석은
아래의 글을 참고하시구요.
[이동훈t] 수능 난문 만드는 법 (+221130, 231122) 수학2, 미적분
22 학년도 미적분 30 번과
24 학년도 미적분 28 번은
큰 틀에서 문제의 구조가 같고,
소재로 보면 자매 입니다.
221130(미적분)은
점의 확대축소로
두 함수 f(x), g(x)를 결정하고,
(적분계산: 부분적분법(역함수의 정적분+기하적해석))
241128(미적분)은
점의 평행/대칭이동, 확대축소로
함수 f(x)의 방정식을 결정합니다.
(적분계산: 치환적분법)
2년 전에 확대축소만 출제되었으니,
평행/대칭이동의 관점까지 추가해서 출제한다.
그리고 부분적분법에서 치환적분법으로 바꾼다.
교육과정에서 보면 ...
평행이동 + 대칭이동 + 확대축소 = 점의 이동
부분적분법 + 치환적분법 = 초월함수의 적분법
이고 ...
이건 평가원 출제자들의
전형적인 출제 방식을 보여줍니다.
즉, 출제자들은 본인들이 만든 문제 A를 보면서
A 합 A^C = 전체
에서 A^C 에 해당하는 지점을 찾기 위해 노력 한다는 것입니다.
이렇게 하면
각 문항의 정답률을
원하는 대로 얻을 확률이 높아지지요.
나는 28 번 문제 생김만 보고서
' 아 이건 재작년 30 번에서 나온 문제네. '
라는 생각이 들었는데요...
안정적인 만점을 노리는 분들은
이 정도는 쉽게 보여야 합니다.
.
.
.
교육과정의 체계에서
이 문제를 분석해 볼까요 ?
f(9)/f(8) 의 값을 구하라고 하였으므로
함수 f(x) 의 방정식을 유도해야 합니다.
이때, 상수 k 의 값을 결정해야 하니,
구간 [0, 7] 에서의 정적분 값이 e^4-1 이다.
에서 k 의 값이 유도된다는 생각을 할 수 있어야 합니다.
중/고등 교육과정의 체계상
집합 -> 함수 -> 정적분
이므로, 이 문제의 주어진 조건에서
집합(정의역, 치역),
함수(의 방정식, 그래프, ...)
를 우선 살펴보아야 합니다.
함수(즉, 그래프)는 점들의 집합이므로
곡선 y=f(x) 가 지나는 점을 찍어야 한다.
곡선 y=f(x) 가 반드시 지나는 점을 찍으면
(g(t), t), (h(t), t)
인데. 붉은 칸에서
h(x) = k - 2g(x)
라고 하였으므로
(g(t), t), (k-2g(t), t)
입니다. 이때, 점의 이동의 관점에서
k-2g(t) 는 x 축 위의 g(t) 를
y축에 대하여 대칭이동시킨 후,
y축에 대하여 2배 하고,
x축의 방향으로 k만큼 평행이동시킨 것입니다.
이제 아래의 그림과 같이
함수 f(x)의 그래프를
그릴 수 있습니다.
(아래는 2025 이동훈 기출 미적분 풀이)
위의 풀이에서
정의역 : 실수 전체의 집합 = (-inf, 0) 합 [0, k) 합 [k, inf)
치역 : 음이 아닌 실수 전체의 집합
함수 : 두 구간 (-inf, 0], [k, inf) 에서 일대일 대응(방정식까지 유도됨)
구간 [0, k]에서 f(x)=0 (<-귀류법 이용)
정의역을 2개 이상의 집합으로 쪼개는 것,
각 구간에서 함수 f(x)의 방정식을 결정하고,
성립하는 성질을 생각하는 것,
귀류법을 적용하는 것,
막상 직접 출제 범위는 별 것 없는 쉬운 계산이라는 것,
... 등등이
이건 수능 문제야 !
라고 말하는 것 같습니다.
(이 문제의 경우에는
세 개의 구간으로 쪼개서 ...
두 개의 구간에서는 일대일함수,
나머지 한 구간에서는 상수함수임을 밝혀야 하지요.
이 과정에서 귀류법을 써야 하고요.)
.
.
.
잘 만들어진 수능 문제를 보면 ...
출제자들이 교육과정과
본인들이 만든 기출 문제를
얼마나 잘 이해하고 있는지를
알 수 있습니다.
.
.
.
이번주 중에
2024 수능 수학에 대한 심층분석글을
올려드릴 예정입니다.
또 만나요 ~~!
ㅎㅍ~
2025 이동훈 기출 사용법 (+실물사진)
2025 이동훈 기출 실전 개념 목차
(참고로 2025 이동훈 기출은 수분감 + 뉴런 포지션 입니다.)
[이동훈t] 학습법, 수학 칼럼 링크 모음 ('23~'24)
고1 평가원 기출문제집 (PDF 무료 배포)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
중딩때 교실에서 춤추다가 백스핀 엘보로 여자애 넉아웃시킴 그때가 3월 말인가엿음...
-
팥붕 vs 슈붕 5
ㅇㅇ
-
사람들을 만나고 나서 오히려 에너지가 충전되는가 vs 기빨려서 집에서 재충전을 해줘야되는가...
-
짜파구리 먹을가 오랫만에
-
미분적분학 2
미적82 독학 가능한가요?
-
다시 귀여운 먐먐밈으로 。◕‿◕。
-
스트링 치즈 먹으면서 참아야지 시벌
-
ㅈㄱㄴ 예전엔 됐다는 얘길 어디서 들어서..
-
고민상담 해드릴게요 17
T에요
-
이시간에 갈비찜먹방을 왜봣지 ㅅㅂ진짜
-
죄송합니다
-
이건 근데 걍 레전드라 못품
-
추워
-
적당히 3-4지망 딱 붙어서 다시 할 생각도 업는데 수능 수학 망한게 계속...
-
F T 5
아일랜드
-
대성마이맥 0
지금 42만원인데 이제 와서 사는거 좀 오반가? 대부분 메가쌤들 보고있는데 1,2개만 깔짝깔짝하려구
-
내일 뭐먹지
-
걍 하지마셈
-
내가 수2를 모다는 것도 잇긴한데,그래프 그려오는 것도 그렇고 이 개형 찍는...
-
나도 자러감 5
바이
-
여긴 진짜 전장 각인데
-
부럽다인생
-
정시파이터 0
22222나 23222 사탐확통은 어느정도 라인까지 가나요? 공대는 빡셀까요?
-
왜냐면 일단 매력적인 본인은 인팁임
-
ㅇㅇ?
-
자러갈래요 0
같이 잘 사람 따라오셈뇨
-
자유전공은 뭘까 1
커리큘럼도 알아봐도 안나오고 참 난해한 1년일듯
-
씨발놈들아
-
앰비티아이별로임 2
지가 계획적이다 체크 -> j 막상 과제 하나도 안하고 밀림 뭐임..?
-
FT 4
아일랜드ㅋ
-
새벽에 버스탄다는데.. 다치지만 말고 무사히 전역했으면
-
MBTI. 2
I : 집이 조음 E : 밖이 조음심지어 둘이 집과 밖의 기준도 다름S :...
-
ft구분법 3
- 위치는 같은데 휘어진게 위면 f 아래면 t임
-
오르비 가입하고 첫 글입니다. 궁금한게 너무나도 많은 현역입니다. 답변 좀 해주시면...
-
2년 반동안 핸드폰,컴퓨터 있는 감옥에 홀로 갇히면 0
원래 일반인도 히키코모리 되서 나오나요 (단 폰으로 카톡,디엠은 금지) 전 중3땐...
-
사실 원래는 1
아프면 할꺼 제대로 못하니까 낫는데 전념하라고 함
-
인팁임
-
피곤할땐 공감이 안됨 머리 ㅈㄴ 굴려가면서 억지 공감하는거라 몇번 하고나면 피로함...
-
수수료가더나가
-
? 9
F는 머라함
-
왜 삼?
-
나 반반인데
-
코인 계좌 만들자마자 바로 10배 숏 땡겨야겠다
-
판사 되기 ㄷ 빅펌 입사 잘 몰라서 궁금해요...
-
진짜 아직도 기억에 남는 이유가 있었네 개감동이다 진짜
-
제가 수능에서 수학을 밀려써서 3등급이 나왔는데 시대인재를 붙었거든요... 6/9모...
-
ㅜㅜ
-
어디까지올라가는거에요???
-
한번 더 해서 미련을 털어낼 수 있다면 남는 장사일까요 8
딱히 메디컬을 지망해본 적 없는 입장에서 삼반수를 택함으로써 잃은 것도 은근 있다는...
-
지구는 확정이고 메디컬 목표 부울경 지역인재 가능 작수 언미영물지 12142 생명...
선생님 쪽지 좀 봐주세요.
답장 보냈습니다. 감사합니다. :)
혹시 교재에서도 이러한 기출 간의 상관관계에 대해 언급해주시나요?
2025 이동훈 기출은 유형별 구성이며, 각 유형에 대한 실전 개념이 포함되어 있습니다.
위의 두 문제의 경우 ... 30번은 역함수의 미분법, 28번은 치환적분법에 해당하므로 같은 유형이 아닙니다. 다만 점에 대한 해석의 관점에서 같고 ... 이에 대해서는 실전 개념에서 설명하고 있습니다. (다만 위의 칼럼 처럼 직접적으로 두 문제를 대조비교하는 것은 아닙니다. 점의 해석을 어떻게 할 것인가에 대해서 실전 개념에서 다루는 것입니다. 이에 대한 문제는 워낙 많기 때문에 ... 위의 설명 처럼 두 문제만 딱 짚어서 대조 비교 하기 힘듭니다. 책이니까요.)
자세한 책 소개 글은 아래를 참고하세요. 감사합니다. ~ :)
[이동훈t] 2025 이동훈 기출 사용법 (+실물사진)
https://orbi.kr/00066537545