풀만한 수열의 극한 문제 하나 드립니다~
답.txt
제가 만든거 아닙니다..그래서 퀄리티도 그렇게 나쁘지 않을겁니다..
원문링크는 아래와 같습니다.
https://www.artofproblemsolving.com/community/u296133h1220663p6119372
링크 댓글에 제가 허접한 영어실력으로 풀이를 달긴 했는데 저의 작문 실력을 보이고 싶지 않으니 그냥 무시하시면 됩니다..답은 첨부파일에!
(링크가 뭐 엄청 대단한 문제처럼 돼있는데 실상은 그렇진 않은 것 같습니다..)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
대충 얼마정도인가여
-
올해 모의논술은 잘풀었었는데 문제유형은 비슷한게 많긴했던거같긴한데 모의논술보다 훨씬...
-
경영임 응원 좀
-
평소보다 너무 안 나와서 재수 생각하는데 일단 대학 걸고 해야되나 고민돼서요.....
-
문제될까요ㅠ 입학처에 말을 해야할지 그냥 둘지 모르겠네요 괜히 했다가 문제될까봐...
-
고3 생기부 하나도 빠짐없이 한줄이고 무단결석도 거의 50번인데 내신 2.4면...
-
중앙대 수리논술 1
1번에 9분의2맞지?
-
응원 한마디 부탁해요
-
하지만 이번생은...
-
이 문제인데 a의 값을 구하면 쉽게 풀 수 있는 문제인데 다시 풀다가 궁금증이...
-
준비 1도 안하고 논술 와있는데 가망없는거 안가기도 뭐하고해서 걍 옴.. 나중에...
-
1.머리 배려심이 많고 이타적이다 2. 세수 자기평가에 예민하다. 3. 양치...
-
화이팅
-
1. 사귀기전에 나랑 여친이랑 썸탈때 나한테 갑자기 친추후 나한테 dm보내서 지가...
-
미적76 0
미적 76 2등급 제발 주세여 제발
-
후기 90분은 힘들다. 기억이 안나고 정신차리기 힘들고 그냥 그동안 풀어온 본능으로...
-
주인공 집에서 불끄면 물건 날라다니고 주인공 몸 굳어가는 소설이예요 기출에 나왔던거 같은데
-
대구한이 유급은 좀 더 빡센걸로 알고 있는데
-
엄.. 8
-
군수 예정 3월 입대(공군) 서울대학교 재학중 목표: 의대 선택 과목 :언 미 물...
-
냥대 상경 3
3번에 k 자연수로 풀어서 답 틀렸는데 아예 가망 없을까요 최대까진 제대로 구했는데 하...
-
빅포텐 1,2까지는 풀꺼같은데 혹시 3까지 다 풀어야 하나요?
-
중앙대 영어 최저 2->1로 쳐주는거 알고 있으셨나요? 3
전 저번주네 보고 황급히 준비..
-
과외알바를 생각하시는 분들을 위한 매뉴얼&팁입니다. 미리 하나 장만해두세요~~...
-
메가는 된다고 하는데 다들 안될거라는 분위기네
-
상의가 캐주얼한것밖에 없음 결국 한시간동안 코디하다가 안돼서 긴팔에 츄리닝으로 복귀
-
실수 한문항 했던거같은데 그게 너무 걸린다. 최저도 까다로운편이고 경쟁률도...
-
애니안보는이유 5
인싸청춘라잎 보면 자!살말릴거같아서
-
과는 사회과학계열입니다... 메가 예측에서 안정으로 뜨긴 합니다.
-
아빠가 이상한 기사 보고 와서 계속 영어 1등급 7~8% 나온다는데 4
메가 비율 보여주면서 똑같은 얘길 5번째 해주고 있네 ㅈㄴ답답하다 뭔 사기꾼 기사를 보고 온 거야
-
[고려대합격자를 위한 꿀팁][사전공지]_수능 끝나고 입학 전까지 하면 좋을 것들 [학업 편] 0
안녕하세요. 고대에 처음 발을 딛는 우리 '아기호랑이들'을 위해, 2024년...
-
1. 자연과 윤리 위 - 9모 아래 - 수능 ㄹ선지 연계 2. 사회와 윤리 위 -...
-
전 유명해져야하는데 17
그래서 이쁜말만 하는중
-
입실 1등 15
논술 1등 장원 급제 드가자
-
높은편임? 왱케 많이왓지 우리 반에 22명잇던데
-
문제 똑같음? 뽑는건 따로 뽑지않나
-
정신없네…
-
두근두근
-
미적 3-2는 못풀어서 다른것들만 올려봅니다
-
12월 말 개강전에 대기 풀림??
-
사탐런 저격으로 생윤 ㅈㄴ 괴랄해졌는데 평가원에서 그것도 수능에서 한 번 어려우면...
-
머리 존나 아프네
-
나머지 문제 빼고 다 풀었고 나머지 문제도 답은 냈는데 전 좀 쉬웠던 거 같았는데 다들 어떠셨나요?
-
문제당 배점이 30 30 40인 게 매년 다르던데 이번 40은 몇 번이라고...
-
0.01 페이커급 갈리오 플레이함! 파이크 그랩도 페이커가 아리 매혹 피하듯이 피함!
-
교수가 내 풀이를 봐준다고 생각하면서 적으니까 막 흥분됨ㅎㅎ 풀면서 ㅈㄴ교수 너의...
-
유명해지면 안되겠다 11
한 말이 많아가지고
-
사탐런 2
3,5,6,7,9,10, 수능 순서대로 생명 42 47 47 42 42 50 42...
-
생윤 42가 표점이 높네 그럼됐다 ~
-
확실히 실버는 듀오 없으면 탈출 못 하겠다 진짜 에지간히 못하네
코시수열은 교육과정 아득히 바깥..ㅠ
이 수열은 굳이 따지자면 코시수열이긴 하지만, 왜 그 말씀을 하시는건지요?..
엡델 안쓰고 교과과정 내에서 어떻게 답을 구할 수 있을지 잘 모르겠네요. 풀이 보여주실 수 있으신가요?.?
그냥 대입해서 계산하다보면 x4, x5의 절대값이 1/4보다 작습니다. f(x)=x^2+x/2라고 할 때, x2n, x(2n+1)의 절대값이 a보다 작고 a가 1/2보다 작으면 x(2n+2), x(2n+3)의 절대값이 f(a)보다 작음을 절대부등식을 통해 할 수 있습니다. n이 1씩 커질수록 절대값 제한에 f가 덧붙여지고, 이때 링크의 제 풀이에서는 f가 덧붙여지는것을수열로 표현했는데, 여기에 f가 붙을수록 0에 수렴함을(말로 표현하려니 이렇게 밖에 안되네요..) 증명할 수 있습니다.(이는 등비수열에서 공비가 1보다 작으면 0으로 수렴함, 샌드위치 정리에 의해 증명되지요.) 절대값 제한이 0에 수렴하니까 결국 샌드위치 정리에 의해 xn자체도 0에 수렴하게 되지요. 링크의 풀이에는 제가 엡델을 썻는데 그냥 제가 입델을 좋아해서 쓴 것이고, 굳이 쓸 필요는 없다고 생각합니다만...
샌드위치가 먹힐 줄 몰랐네요. 감사합니다